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What is geometric deep learning?

– ML on graphs and manifolds

Why switch to a non-Euclidean space?

- New descriptors can be incorporated to constitutive laws 
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Data Representation

Figures from geometriclearning.com

Consider descriptors of data as the ingredients for theory
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Descriptors in a non-Euclidean space

Why switch from Euclidean to Non-Euclidean space:

§ Data structures crafted meaningfully leveraging 
domain expertise / interpretable structures

§ Graph structures (direction - weights) → expressivity
§ Euclidean grid data (eg. images) → ambiguity of 

interpreted features
§ Eliminate grid resolution dependency → 

computational efficiency

Recommender system Drug repurposing

Fake news detection Chemistry

Images from geometricdeeplearning.com

(Image: © Egor Zakharov) 4



New descriptors for more accurate and more 
efficient predictions

Polycrystal RVE Node-weighted undirected crystal connectivity graph

Language-game Meta-modeling games 
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Ludwig	Wittgenstein
Philosophical Investigations (1953)

Vlassis,	Ma	&	Sun,	under	review
Wang & Sun, CMAME, 2018a, 2019a	2019b
Wang & Sun, under review



How to use graph in constitutive law generation?
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Constitutive law generation with non-Euclidean descriptors

Sun, Andrade, Rudnicki, IJNME, 2011, Wang & Sun, CMAME 
2016, Wang et al. IJMCE 2016,  Wang & Sun, CMAME 2018

§ Microstructural graph information accessible by 
postprocessing imaging data

§ Combine with experimental and simulated data 
(strain – stress curves, flow simulations, etc)

§ New insight in microstructure mechanism 
discovery – learn directly from data while 
leveraging domain knowledge

Some graph structures are readily available

The connectivity graph of the crystals in a polycrystal formation (this work) The connectivity graph of the grains in a granular assembly.
The graph of the pore network
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Predicting an anisotropic hyperelastic energy functional for polycrystal formations

This work: Predict with  the  polycrystal microstructure data in 
non-Euclidean form (connectivity graph) 

Framework:

Translate polycrystal formations into undirected 
weighted connectivity graphs

Perform FFT simulations to generate homogenized energy 
and stress response database for polycrystal RVEs

Hybrid neural network architecture

* Graphs encoded in feature 
vectors

𝔾

𝑭
ψ

Unsupervised 
classification of 
graphs - graph 
convolutions

Regression of 
energy 

functional 𝜓

*

graph

strain

energy

Geometric deep learning for computational 
mechanics Part I: Anisotropic Hyperelasticity, 

Vlassis et al, under review 

A. Frankel et al. arxiv 2019
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Translating polycrystal formations into undirected weighted graphs

A graph is a two-tuple 𝔾 = (𝕍, 𝔼) where 𝕍 = {𝑣-,… , 𝑣/ } is a non-empty vertex set (also referred to as nodes) and 𝔼 ⊆
𝕍 × 𝕍 is an edge set. To define a graph, there exists a relation that associates each edge with two vertices.

Polycrystal formation Undirected weighted (connectivity) graph

§ Every crystal is a node

§ Two crystals that are in
contact are connected by
an edge

In the above example:

Vertex and edge sets Symmetric normalized Laplacian matrix Feature matrix

§ Every node has weights –
features

[volume, orientation, number of 
neighbors, number of edges, number of 
surfaces, etc.]
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Hybrid neural network architecture

Graph Convolutional Layers (GCN):

output

non-linear 
activation

normalized 
graph 

Laplacian

features

weights

bias Graph convolution of the 
spectrally decomposed 

graph Laplacian 
approximated by stacking 

first order Chebyshev 
polynomials filters The graph Laplacian operator 

describes the difference between a 
value f at a node and its local 
average – spatial filter of the node 
feature relations in the graph
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Robust regression of anisotropic energy functional

Training schematic:
§ Constrain both energy 

and stress predictions 
during optimization

§ The derivative of the 
trained neural network 
wrt the input strain is a 
valid stress tensor

Higher order training constraining both the function’s values and derivatives [Sobolev training, Google Deep Mind]:

𝐿4 norm: 𝐻- norm:

Constrain energy Constrain energy and stress

Sobolev training: requires less data samples, smoothened approximated functions, 
accurate approximated derivatives
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𝐿4 norm - 𝐻- norm Training Comparison
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Database generation with FFT simulations

§ Fast Fourier Transform method (FFT) for mesoscale homogenization of the polycrystal 
formation response

§ 3D periodic domain
§ Locally a generalized Fung elasticity model is used, with strain density function 𝑊:

where 𝑐 is a scalar material constant, 𝑬 is the Green strain tensor, 𝜇: and 𝜆:< are 
anisotropic Lame constants, and 𝒂:> is the unit vector of the orthotropic plane normal.

§ 150 randomly generated RVEs of 40 to 50 crystals each
The orientation distribution function (ODF) is randomly generated by combining uniform 
orientation and unimodal orientation: 

𝑓 𝒙; 𝒈 = 𝑤 + 1 − 𝑤 𝜓 𝒙,𝒈 , 𝒙 ∈ 𝑆𝑂 3 .

§ Simulations are performed for each RVE with 200 average strains. 

Note: constitutive relation is hyperelastic ⇢ simulation result is path independent 

Pole figure plot of initial orientation distribution function (ODF) 
combining uniform and unimodal ODF. The Euler angles of the 

unimodal direction are (207.1P , 17.8P , 159.0P) in Bunge notation, 
and the half width of the unimodal ODF is 10P

R. Ma, W.C. Sun, FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly 
anisotropic brittle materials and poly-crystals, Computer Methods in Applied Mechanics and Engineering, 2019. 13



Results?

14



Numerical experiment 1: The material response of a single polycrystal formation

A simple multilayer-perceptron (MLP) with 
Sobolev training can capture the behavior 
of a single polycrystal formation

K-fold Cross-validation algorithm
Figure from Wikipedia

K-fold blind prediction results for 200 randomly generated 
deformation gradients for a single polycrystal formation

Energy and stress response surface estimation for a single 
polycrystal formation
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Numerical experiment 2: The anisotropic behavior is captured with the graph input

§ Graph input ⇢ distinguish between polycrystal formation behaviors
§ The encoded vectors are inferred anisotropy descriptors
§ Without graph, the prediction of the network is a mere projection of the true 

values (mapping problem: for 1 strain input – 2 output energy values)

Energy response surface estimation for 2 RVEs with and without the graph input

A simple multilayer-
perceptron (MLP) 
without the graph 
input cannot capture 
the behavior of 
multiple polycrystal 
formations!
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K-fold Cross-validation results

§ K-fold cross validation blind forward prediction results for 100 different polycrystal formations
§ Superior blind prediction results for hybrid architecture (compared to 𝐿4 and 𝐻- constrained multilayer-perceptrons)

𝐿4 norm:

𝐻- norm:
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Regularization

§ Graph-encoding branch of the network is prone to overfitting 
§ Regularization needed (dropout, 𝐿4 regularization)

𝐿4 norm:

𝐻- norm:
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Numerical experiment 3: Objectivity, anisotropy and convexity of the material model 

Convexity check

The first order Taylor expansion at any point of the domain is a global under-estimator of 
a convex function f :

𝜙 = 0P

𝜙 = 30P

𝜙 = 60P

Anisotropic responses obtained from ML trained  energy functional 

Objectivity check
Function must be left rotationally invariant:

The model is trained as function of the right Cauchy deformation tensor 𝑪, 
thus, the condition is automatically met:

W𝜓 = W𝜓(𝑪,𝔾) = W𝜓(𝑪X,𝔾) with
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Parametric study: Anisotropic response of polycrystal formations in phase-field fracture 

§ Anisotropic model behavior examined 
with phase-field fracture numerical 
experiments 

§ Crack propagation under a dynamic 
shear load (Kalthoff and Winkler, 
1988)

§ The balance of linear momentum and phase-field 
equations are solved with the finite element method 
in large deformations.

§ The homogenized response of the polycrystal 
formation is calculated at the material points by the 
trained hybrid neural network.

“tensile-compressive split”:

,

Crack patterns at 30 μs, 50 μs, 65 μs, 85 μs for the dynamic shear loading 
experiment with an impact velocity of v = 33.0 m/s for a model with two 

different polycrystal formations - graph inputs.

History variable:

Stress response:

Isochoric-volumetric split:
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Conclusion – Future work

Conclusion:
§ First attempt to incorporate non-Euclidean descriptors in constitutive 

generation
§ Microstructures translated into undirected weighted graphs
§ Introduced hybrid neural network architecture ⇢ unsupervised 

classification of graphs / supervised regression of energy functional
§ Sobolev training for robust energy functional prediction
§ Inferred encoded vectors ⇢ anisotropy descriptors
§ Introduced hybrid neural network model in a phase-field fracture 

framework

Future work:
§ Expand geometric learning framework to other domains (granular 

materials, flow network)
§ Explore path-dependent behavior (plasticity) – graphs changing in time
§ More expressive graph structures – direction, weighted edges, higher order 

Laplacians.
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THANK YOU!
More information can be found at 

www.poromehanics.org
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http://www.poromechanics.org/

