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Abstract

Cracking and damage from crystallization of minerals in pores center on a wide range of problems,
from weathering and deterioration of structures to storage of CO2 via in situ carbonation. Here we
develop a theoretical and computational framework for modeling these crystallization-induced de-
formation and fracture in �uid-in�ltrated porous materials. Conservation laws are formulated for
coupled chemo-hydro-mechanical processes in amultiphasematerial composed of the solidmatrix,
liquid solution, gas, and crystals. We then derive an expression for the e�ective stress tensor that is
energy-conjugate to the strain rate of a porous material containing crystals growing in pores. �is
form of e�ective stress incorporates the excess pore pressure exerted by crystal growth—the crystal-
lization pressure—which has been recognized as the direct cause of deformation and fracture during
crystallization in pores. Continuum thermodynamics is further exploited to formalize a constitu-
tive framework for porous media subject to crystal growth. �e chemo-hydro-mechanical model is
then coupled with a phase-�eld approach to fracture which enables simulation of complex fractures
without explicitly tracking their geometry. For robust and e�cient solution of the initial-boundary
value problem at hand, we utilize a combination of �nite element and �nite volume methods and
devise a block-partitioned preconditioning strategy. �rough numerical examples we demonstrate
the capability of the proposed framework for simulating complex interactions among unsaturated
�ow, crystallization kinetics, and cracking in the solid matrix.

Keywords: in-pore crystallization, chemo-hydro-mechanics, fracture, phase �eld, e�ective stress,
reactive transport

1. Introduction

Growth of mineral crystals in pores can give rise to severe damage and cracks in the host mate-
rial. �ese coupled chemo-hydro-mechanical processes are now central to a number of problems in
our society. A well-known example is weathering and deterioration of historic and building struc-
tures due to salt crystallization. Many of these structures are comprised of materials prone to inva-
sion of salt water (e.g., stone), so they can be severely damaged when salt minerals grow inside the
pores. See Fig. 1 for example. Preventing this type of damage has been a critical element of conser-
vation of cultural heritage and structures around the world [1–6]. Also, crystallization ofminerals in
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the subsurface can trigger ground heaving that severely damages buildings and geotechnical struc-
tures [7–9]. Furthermore, reaction-driven cracking during mineral hydration, carbonation, and
oxidation is a key consideration for deploying a promising strategy for geologic carbon storage that
transforms CO2 into solid carbonate minerals [10].

Figure 1: Example of damage in building stones by crystallization of salts. (Photograph by SuzanneMacLeod, distributed
under a CC-BY 2.0 license.)

Addressing the problem of cracking and damage from crystallization in pores requires us, as a
�rst step, to understand its fundamental mechanism. Figure 2 schematically shows how a crystal
is present inside a pore space. Importantly, the crystal is usually con�ned within a liquid solution,
maintaining a thin liquid �lm between its surface and the solid pore wall (see Scherer [11, 12] for de-
tailed explanations). �e liquid solution surrounding the crystal allows it to continuously grow and
push on the pore wall. �is process of crystal growth generates an excess pressure on the solid ma-
trix, which is commonly referred to as the crystallization pressure in a number of previous studies
(e.g., [12–19]). �ese studies have proposed expressions of the crystallization pressure, showing that
this pressure can far exceed the tensile strength ofmany porousmaterials. �is a�rms that the crys-
tallization pressure is the direct cause of fracturing and damage during crystallization in pores, and
thus, an accurate prediction of the crystallization pressure per se is an important research problem.
However, an expression for the crystallization pressure alone is insu�cient for tackling real-world
problems such as those mentioned above, because the scales of these problems are orders of mag-
nitude larger than the scale of pores. Also necessitated is a continuum-scale modeling framework
that allows us to simulate and predict how crystallization pressures would evolve in space and time
and ultimately a�ect the problem at the �eld scale. �e necessity of such a predictive modeling
framework is the motivation of this work.
Continuum modeling of fracturing by in-pore crystallization poses two signi�cant challenges.

First, it requires a mathematical formulation that encapsulates complex interactions among chem-
ical reactions, �uid �ow, and solid deformation in porous materials. A coupled formulation for
such chemo-hydro-mechanical processes is not only di�cult to develop in a theoretically consistent
manner, but also challenging to solve numerically since the �ow, transport, and reaction processes
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Figure 2: Schematic illustration of a crystal inside a pore. Note that the crystal is con�ned within the liquid solution,
not being in contact with the solid matrix. Similar illustrations have been presented in [12, 15, 20].

involve multiple length and time scales. Second, as can be seen from Fig. 1, the fracturing process of
interest entails extremely complicated geometries that cannot be idealized as a set of sharp disconti-
nuities. Obviously, algorithmic capture of such complex geometries are very unwieldy and onerous.
Since these two types of challenges are interwoven herein, theoretical and computational modeling
of crystallization-induced fracturing is a particularly demanding task.
Modeling frameworks that address both of these theoretical and computational challenges re-

main scarce. To our knowledge, Coussy [21] introduced the �rst chemo-hydro-mechanical frame-
work for deformation and fracture from in-pore crystallization of minerals. His work presented
signi�cant contributions to theoretical aspects, but it remained unclear how the theory can be ap-
plied to construct an initial-boundary value problem of the crystallization-induced fracturing pro-
cess. Some of more recent studies proposed computational models that paved the way to numerical
simulation of the crystallization problem (e.g., [20, 22]). Yet, challenges remain for both the the-
ory and computation. First, theoretical formulations in past studies show signi�cant disagreement,
particularly with respect to the de�nition of e�ective stress which governs the constitutive behav-
ior of the solid matrix. Second, the existing computational models appear insu�cient for address-
ing complex cracking and damage processes from crystallization. For example, Koniorczyk and
Gawin [22] used linear elasticity without consideration of fracture. Derluyn et al. [20] employed
a simple local damage model along with elasticity, but their work was limited to identi�cation of
crack nucleation by comparing the e�ective stress and the tensile strength in a 1-D setting. Such an
approach would be inappropriate for delineation of the onset and evolution of damage and cracking
zones in multi-dimensional problems. Also, their use of the standard, continuous �nite element
method (FEM) may not be an optimal choice, since it could su�er from numerical stability prob-
lems arising from the advective transport of minerals. To address the stability problem, Derluyn et
al. [20] smoothed equations related to crystallization kinetics. However, they also found that the
smoothing parameters can plague the physics signi�cantly. Another issue is that their work used
a one-way coupled staggered scheme, which is presumably because computational cost for fully
coupled chemo-hydro-mechanics is prohibitively expensive without a carefully designed solution
strategy. All of the aforementioned aspects indicate that a signi�cant amount of more work is nec-
essary to advance the theory and computation of crystallization-induced cracking and damage in
porous materials.

�e purpose of this work is to develop a more theoretically grounded, computationally e�cient
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modeling framework for crystallization-induced deformation and fracture in porous materials. To
this end, we �rst draw on recent advances in continuummodeling of coupledmultiphysics in porous
materials. For theoretically consistent modeling of the coupled chemo-hydro-mechanical problem
at hand, we use continuum principles of thermodynamics which have been the basis of rigorous
poromechanical frameworks in the literature [23–28]. �e use of thermodynamic arguments pro-
vides a systematic procedure to derive physically meaningful forms of e�ective stress and constitu-
tive laws for coupledmultiphysics processes. Notably, the poromechanical frameworks developed in
this way have demonstrated their ability to reproduce a variety of real-world observations (e.g., [28–
30]). �en, for obtaining a stable numerical solution to the problem, we utilize the �nite volume
method (FVM) for the �uid �ow and transport problem which involves advection phenomena,
and the standard �nite element method for the solid deformation problem which does not. Fur-
thermore, we introduce a three-�eld block-partitioned solver that enables one to solve the coupled
chemo-hydro-mechanical problem with an a�ordable computational cost.
As for the modeling of cracking and damage, we adopt a phase-�eld approach to fracture which

has emerged as an e�cientmeans for simulating complicated crackswithout explicitly tracking their
geometry (e.g., [31–52]). �is feature of phase-�eld modeling is particularly desirable for our pur-
pose since most (if not all) observed cracks due to in-pore crystallization are extremely di�cult to
delineate geometrically. Also, inmost cases, crystallization in pores gives rise to distributedmicroc-
racks, resulting in rounded damage zones like those shown in Fig. 1. Such complex damage patterns
can also be captured by the use of a phase-�eld model, because it can be regarded as a particular
class of nonlocal gradient damage models [53]. As such, in this work we adopt a phase-�eld model
of fracture to simulate both distributed damages and localized cracks by in-pore crystallization, in
a mesh insensitive manner. In doing so, we also propose a way to estimate the length regularization
parameter of the phase-�eld model, by drawing on an empirical relationship between the fracture
toughness and the tensile strength of geomaterials.

�e paper is organized as follows. In Section 2, we formulate balance laws for a porous con-
tinuum containing liquid solution, gas, and crystals in the pores. Subsequently, in Section 3 we
use thermodynamic arguments in conjunction with the balance laws to derive suitable expressions
for e�ective stress and multiphysics constitutive relations. In Section 4, we derive a phase-�eld
formulation of brittle fracture as a balance law such that it can be augmented to the coupled chemo-
hydro-mechanics formulation developed in previous sections. We then discretize the resulting for-
mulation in Section 5 via a combination of �nite element and �nite volume methods, and devise a
block-partitioned iterative solver for the coupled problem. In Section 6 we present numerical exam-
ples demonstrating the validity and performance of the proposed framework for modeling complex
chemo-hydro-mechanical and fracturing processes from crystallization of minerals in pores.

2. Conservation laws

In this section, we develop conservation laws for coupled chemo-hydro-mechanical processes in
mineral-containing, partially saturated porous materials. We �rst introduce a continuum mixture
representation of this type of porous material, and then formulate balance laws for its mass, linear
momentum, and energy. At this point, we note that the purpose of this and the next section is to
formulate a general mathematical model amenable to being combined with various methods for
modeling cracking and damage. Later in Section 4, we will adopt a speci�c method, namely phase-
�eld modeling.
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2.1. Continuum representation
Using mixture theory we conceptualize the material of interest as a multiphase continuum in

which the solid matrix, liquid solution, gas, and mineral crystals are overlapped. See Fig. 3 for an
elementary volume representation of this four-phase mixture. We de�ne the volume fractions of
the constituent phases as

ϕs =
dVs

dV
, ϕl =

dVl

dV
, ϕg =

dVg

dV
, ϕc =

dVc

dV
, ϕs + ∑

α=l ,g ,c
ϕα = 1 , (1)

where the index s refers to the solid matrix, l the liquid solution, g the gas, and c the crystals. It is
noted that an index is used as a subscript when referring to an intrinsic property of a constituent
phase, whereas it is used as a superscript when referring to a partial property of the mixture. We
de�ne the saturation ratios of the phases in the pore space—the liquid solution, the gas, and the
crystals—as

S l =
ϕl

1 − ϕs , S g =
ϕg

1 − ϕs , Sc = ϕc

1 − ϕs , S l + S g + Sc = 1 . (2)

Let ρs, ρl , and ρc denote the intrinsic mass densities of the solid, the liquid solution, and themineral
crystals, respectively. �e partial mass densities of the constituent phases are given by

ρs = ϕsρs , ρ l = ϕlρl , ρg = ϕgρg , ρc = ϕcρc , ρs + ∑
α=l ,g ,c

ρα = ρ , (3)

where ρ is the mass density of the entire mixture.

Solid matrix

Crystals

Liquid solution

Gas

Water

Dissolved minerals dVd

dVw

dV

dVs

dVc

dVl

dVg

Figure 3: Elementary volume representation of a four-phase mixture composed of the solid matrix, liquid solution, gas,
and crystals. �e liquid solution is also a sub-mixture of water and dissolved minerals.

As shown in Fig. 3, the liquid solution itself is also a mixture composed of water and dissolved
minerals. Let the indexw denote thewater and d denote the dissolvedminerals. �eir global volume
fractions are given by

ϕw =
dVw

dV
, ϕd =

dVd

dV
, ϕw + ϕd = ϕl , (4)
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and their saturation ratios are

Sw =
ϕw

1 − ϕs , Sd = ϕd

1 − ϕs , Sw + Sd = S l . (5)

We also de�ne local volume fractions of the water and dissolved minerals as

ψw = ϕw/ϕl = Sw/S l , ψd = ϕd/ϕl = Sd/S l , ψw + ψd = 1 . (6)

Similarly, their partial densities are de�ned as

ρw = ϕwρw = ϕlψwρw , ρd = ϕdρd = ϕlψdρd , ρw + ρd = ρ l . (7)

Note that the intrinsic density of dissolved minerals ρd is identical to ρc, but we have used ρd for
notational purposes. Using the above variables, we can write themass fraction ofminerals dissolved
in the solution as

c = ρd

ρ l =
ρd

ρw + ρd =
ψdρd

ψwρw + ψdρd
. (8)

2.2. Balance of mass
To derive conservation laws for this mixture, we use a kinematic description that traces the

motion of the solid matrix. Let an overdot denote the material time derivative with respect to the
motion of the solid matrix. �en we can write balance of mass for the solid, the liquid solution, the
gas, the dissolved minerals, and the mineral crystals as

ρ̇s + ρs∇ ⋅v = ms , (9)
ρ̇ l + ρ l ∇ ⋅v +∇ ⋅w l = ml , (10)
ρ̇g + ρg ∇ ⋅v +∇ ⋅w g = mg , (11)
ρ̇d + ρd ∇ ⋅v +∇ ⋅wd = md , (12)
ρ̇c + ρc∇ ⋅v +∇ ⋅wc = mc , (13)

respectively. Here, v is the velocity of the solid matrix, mα is the rate of mass production for phase
α, andwα is the Eulerian relative mass �ow vector of phase α with respect to the solid matrix, which
is given by

wα = ραṽα , ṽα = vα − v , α = l , g , d , c , (14)

with vα being de�ned as the velocity of phase α. For the dissolved minerals in the liquid solution,
the relative mass �ow is decomposed into convective and di�usive/dispersive parts as

wd = cw l + j , (15)

where j is the di�usive/dispersive mass �ux of the minerals in the solution.
At this point, we introduce a few assumptions that simplify mathematical expressions in the

succeeding development. First, we assume that the water and crystal phases are incompressible and
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the solidmatrix undergoes in�nitesimal deformations. Second, adopting the assumption in the �uid
�ow model of Castellazzi et al. [54], we postulate that only the dissolved and crystallized minerals
exchange masses among the �ve constituent phases, i.e., ms = mg = 0 and ml = md = −mc. �ird,
we consider that momentum and pressure of the water and dissolvedminerals in the liquid solution
are under equilibrium.

2.3. Balance of linear momentum
Balance of linear momentum for the solid, liquid solution, gas, and crystals can be written as

∇ ⋅ σ s + ρsg + hs
= ρsa , (16)

∇ ⋅ σ l + ρ l g + h l
= ρ la l −mlv l , (17)

∇ ⋅ σ g + ρgg + hg
= ρgag , (18)

∇ ⋅ σ c + ρcg + hc
= ρcac +mcvc , (19)

where σα is the partial (Cauchy) stress tensor of phase α, a and aα is the acceleration of the solid
matrix and phase α, respectively, and hα is the drag on phase α by the surrounding phases, which
is subject to the constraint

hs
+ h l

+ hg
+ hc

= 0 . (20)

Summing up the above equations gives an expression for balance of linear momentum for the entire
mixture, which reads

∇ ⋅ σ + ρg = ρa + ∑
α=l ,g ,c

ρα ãα +mc(ṽ l + ṽc) , (21)

where ãα = aα − a. Here, σ = σ s + σ l + σ g + σ c is the total stress tensor in the mixture.

2.4. Balance of energy
Let P denote the total power, K the kinetic energy, and I the internal energy in the mixture.

�en balance of energy for the mixture can be expressed as

P = K̇ + İ . (22)

�e rate of change of kinetic energy in an arbitrary volume V of the mixture is given by

K̇ = ∫V ρsa ⋅ v dV + ∑
α=l ,g ,c

∫V ραaα ⋅ vα dV + ∑
α=l ,g ,c

∫V
1
2
mαvα ⋅ vα dV , (23)

and the rate of change of internal energy is

İ = ∫V ρė dV , (24)

where ė is the rate of change of internal energy per unit total mass of the mixture.
�e total power is the sum of the mechanical power Pm and the non-mechanical power Pn, i.e.,

P = Pm + Pn. In this work, we consider isothermal conditions in which Pn = 0. Let us introduce
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the in�nitesimal strain tensor for the solid ε = ∇s u = (∇u + ∇T u)/2 where u is the displacement
vector. Similarly we introduce in�nitesimal strain tensors εα for phase α. �e mechanical power is
then given by

Pm = ∫V
⎛

⎝
σ s ∶ ε̇ + ∑

α=l ,g ,c
σα ∶ ε̇α

⎞

⎠
dV

+ ∫V(∇ ⋅ σ s ⋅ v + hs
⋅ v + ρsg ⋅ v)dV

+ ∑
α=l ,g ,c

∫V(∇ ⋅ σα ⋅ vα + hα
⋅ vα + ραg ⋅ vα)dV . (25)

We now substitute above expressions into İ = P−K̇, impose the balance of linearmomentum for
each phase, and localize the resulting integral. �en, we can express the rate of change of internal
energy as

ρė = σ s ∶ ε̇ + ∑
α=l ,g ,c

σα ∶ ε̇α − ∑
α=l ,g ,c

1
2
mαvα ⋅ vα . (26)

�is energy balance equation will be the starting point of the next section where we derive suitable
forms of the e�ective stress tensor and constitutive laws.

3. E�ective stress and constitutive framework

�e purpose of this section is to identify physically meaningful constitutive relations that close
the formulation. For this purpose, we begin by deriving a suitable form of the e�ective stress tensor,
which is a necessary step for constitutive modeling of a deformable porous material in�ltrated by
�uid. We do this derivation based on a thermodynamic argument that the e�ective stress should be
energy-conjugate to the strain rate tensor. From the e�ective stress derivation we identify several
groups of energy-conjugate pairs, and we use them as a guide to develop constitutive relations for
coupled chemo-hydro-mechanical modeling.

3.1. E�ective stress
Our goal here is to �nd the form of stress measure energy-conjugate to the strain rate tensor for

the solid matrix, which, by de�nition, corresponds to the e�ective stress in a �uid-in�ltrated porous
material. For this purpose we apply the procedure developed by Borja [24], which was originally
proposed for porousmedia without any crystals, tomaterials containing solid crystals in their pores.
In doing so, we postulate that the phases in the pores—the liquid solution, gas, and crystals—can
only carry volumetric stresses. �is postulate is reasonable for most pore �uids of interests. For the
crystals, the postulate may be justi�ed by the fact that they are usually �oating in the liquid solution,
as depicted in Fig. 2 previously. See the same reasoning in Na and Sun [55] for incorporating ice
crystals into e�ective stress in frozen soils. �en, we can express the partial stress tensors of these
in-pore phases as

σα = −ϕαpα1 , α = l , g , c , (27)
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where pα is the intrinsic pressure of phase α and 1 is the second-order identity tensor. Substituting
the above expression into Eq. (26) and neglecting thermal terms gives

ρė = σ ∶ ε̇ − ∑
α=l ,g ,c

ϕα(∇ ⋅ ṽα)pα − ∑
α=l ,g ,c

1
2
mαvα ⋅ vα . (28)

From Eq. (28), we can see that the second term on the right hand side is directly related to the
solid deformation (because ∇ ⋅ ṽα = ∇ ⋅vα − ∇ ⋅v), whereas the last term is irrelevant to the solid
deformation. �us we now seek to extract the contribution of ϕα(∇ ⋅ ṽα) to the solid deformation.
�e mass balance equations for the liquid solution, gas, and crystals can be rewritten as

ϕ̇α + ϕα ∇ ⋅v + ϕα ∇ ⋅ ṽα +∇ϕα ⋅ ṽα =
mα

ρα
, α = l , g , c , (29)

and rearranging the above equations gives

ϕα ∇ ⋅ ṽα = −ϕα ∇ ⋅v − ϕ̇α −∇ϕα ⋅ ṽα +
mα

ρα
, α = l , g , c . (30)

Now we look for an alternative expression for ϕ̇α as it is also related to the solid deformation. Re-
calling that ϕα = (1 − ϕs)Sα for α = l , g , c, the material time derivative of ϕα is given by

ϕ̇α = (1 − ϕs)Ṡα − Sα ϕ̇s , α = l , g , c , (31)

�e remaining challenge is to have an explicit expression for the last term, ϕ̇s. Borja [24] has shown
that, in the case of barotropic (isothermal) �ow for the solid, the mass balance equation for the solid
can be expressed as

ϕ̇s + (ϕs − b)∇ ⋅v = 0 , (32)

where b = K/Ks, with K and Ks being the bulk moduli of the solid matrix and the solid constituent,
respectively. Inserting Eq. (32) into Eq. (31), we get

ϕ̇α = (1 − ϕs)Ṡα + Sα(ϕs − b)∇ ⋅v , α = l , g , c . (33)

Using the above equations, we can rewrite Eq. (30) as

ϕα ∇ ⋅ ṽα = −[ϕα + Sα(ϕs − b)]∇ ⋅v − (1 − ϕs)Ṡα −∇ϕα ⋅ ṽα +
mα

ρα
, α = l , g , c . (34)

Here, the coe�cients of ∇ ⋅v can be simpli�ed to

ϕα + Sα(ϕs − b) = (1 − ϕs)Sα + Sα(ϕs − b) = (1 − b)Sα = BSα , α = l , g , c , (35)

where B = 1 − b = 1 − K/Ks is the well-known Biot coe�cient. Finally, we can decompose ϕα ∇ ⋅ ṽα
in Eq. (28) as

ϕα ∇ ⋅ ṽα = −BSα ∇ ⋅v − (1 − ϕs)Ṡα −∇ϕα ⋅ ṽα +
mα

ρα
, α = l , g , c . (36)
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Observe that the �rst term on the right hand side contains∇ ⋅v, which is the rate of volume change
of the solid matrix.
Substituting Eq. (36) into Eq. (28), we can rewrite the energy balance equation as

ρė = σ ′ ∶ ε̇ + ∑
α=l ,g ,c

(1 − ϕs)Ṡαpα + ∑
α=l ,g ,c

(∇ϕα ⋅ ṽα)pα

+ ∑
α=l ,g ,c

(
mα

ρα
) pα − ∑

α=l ,g ,c

1
2
mαvα ⋅ vα , (37)

where

σ ′ = σ + Bp̄1 = σ + B ∑
α=l ,g ,c

(Sαpα)1 , (38)

is the stress measure energy-conjugate to the strain rate tensor, which, by de�nition, is the e�ective
stress. �e “pore pressure” in this form of e�ective stress, denoted by p̄, is

p̄ = ∑
α=l ,g ,c

(Sαpα) = S l pl + S g pg + Scpc

= (S l + Sc)pl + S g pg + Sc(pc − pl) , (39)

which is the mean of the liquid, gas, and crystal pressures weighted by their volume fractions (sat-
uration ratios).
In the absence of crystals (i.e., Sc = 0), Eq. (38) boils down to the thermodynamically consis-

tent e�ective stress tensor in unsaturated porous media derived by Borja [24], which specializes to
the well-known Terzaghi’s e�ective stress [56] in the limit of full saturation and B = 1. However,
when a crystal is growing within a liquid solution in con�ned pore space, the crystal growth exerts
signi�cant excess pressure on the solution �lm between the crystal and surrounding solid particles.
�is pressure—which is commonly referred to as the crystallization pressure in the literature—can
make pc far greater than pl . �en the e�ective stress could become tensile even as the total stress
is compressive, resulting in damage and fracture. Our derivation thus formally shows that the crys-
tallization pressure can be a direct driver of deformation and fracture from crystallization in pores.
Given its signi�cance, the crystallization pressure is herea�er denoted by pcr, i.e.,

pcr ∶= pc − pl . (40)

3.2. Constitutive framework
Having derived the form of e�ective stress, we further exploit the energy-conjugate pairs in the

energy balance equation to identify suitable forms of constitutive laws. We particularly extend the
procedure of Borja and co-workers [26, 27], which has been used for unsaturated porous materials
without crystals, to materials containing crystals in pores. �is procedure simply interprets the type
and formof constitutive relationship that each energy-conjugate pair suggests, without performing a
thorough thermodynamic analysis. �e reason is that the standard argument will eventually require
variables in each energy-conjugate pair to be linked via a constitutive relation, for ensuring the
second law of thermodynamics. �erefore, in what follows, we interpret the implication of each
energy-conjugate pair, and adopt one of the widely used constitutive models in the literature. �e
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selected constitutive model may not agree with the most general form allowed by a thermodynamic
analysis. Note, however, that the speci�c model is just chosen for constructing a particular class of
the general framework we propose in this work—it can readily be replaced by another constitutive
model depending on the purpose of modeling. Also, for brevity, the following discussion focuses on
new aspects emerging from the presence of the crystals. Detailed explanations of the other aspects
unrelated to the crystals can be found in [23–27].
For a clearer interpretation, we �rst simplify some terms in Eq. (37). Since S l + S g + Sc = 1, we

have Ṡ l = −Ṡ g − Ṡc. �us the second term in Eq. (37) can be expressed as

∑
α=l ,g ,c

(1 − ϕs)Ṡαpα = (1 − ϕs)Ṡcpcr + (1 − ϕs)Ṡ g pca , (41)

where the capillary pressure (suction) is de�ned in the last term as pca ∶= pg − pl . Also, the third
and fourth terms in Eq. (37) can be combined as

∑
α=l ,g ,c

mα

ρα
pα − ∑

α=l ,g ,c

1
2
mαvα ⋅ vα = ∑

α=l ,g ,c
mα [

pα

ρα
−
1
2
ṽα ⋅ ṽα] . (42)

�erefore, under isothermal conditions, we can rewrite the energy balance equation as

ρė = σ ′ ∶ ε̇ + (1 − ϕs)Ṡcpcr + (1 − ϕs)Ṡ g pca

+ ∑
α=l ,g ,c

(∇ϕα ⋅ ṽα)pα + ∑
α=l ,g ,c

mα [
pα

ρα
−
1
2
ṽα ⋅ ṽα] . (43)

From the above equation we identify �ve groups of energy-conjugate pairs, which means that �ve
types of constitutive relations are necessary to ensure non-negative entropy production. For each
group, we can introduce a constitutive relation as follows.

�e�rst energy-conjugate pair, fromwhichwehave de�ned the e�ective stress, is themechanical
power produced due to the deformation of the solid matrix. For this pair, it is natural to introduce
a stress–strain relation of the form

σ̇ ′ = C ∶ ε̇ , (44)

where C is a fourth-order tangent sti�ness tensor. In this work, we shall assume that the solid
behavior is linear elastic. �is assumption may not allow us to fully describe the complex sti�ness
of geomaterials [57–59], but it is o�en good enough for modeling brittle fracture on which we focus
in this work.

�e second pair contains the crystallization pressure and the rate of volume change of the crys-
tals. Obviously this pair implies a constitutive law for the crystallization pressure. Notably, the
derived energy-conjugate relationship is consistent with an equation for crystallization pressure put
forward by Kelemen and Hirth [18], which can be expressed as

pcr = −
∆ψ
∆Vs

, (45)

where ∆ψ is the change of Helmholz free energy and ∆Vs is the di�erence in volume between the

11



solid products and the solid reactants. A number of speci�c expressions have been proposed for the
crystallization pressure (e.g., [12–19]). Here we use the classical Correns’ equation [13, 14], given by

pcr =
RT
Vm
ln( c

ceq
) , (46)

where R is the gas constant, T is the temperature in Kelvin, Vm is the molar volume of the mineral,
and ceq is the equilibriummass fraction at which the liquid is saturated by themineral. �is equation
has later been shown to overlook the role of chemical activities in the crystallization process [15, 60],
but it gives reasonable predictions compared with experimental data of salt crystallization.

�e third pair contains the gas saturation ratio and the capillary pressure. Given that the gas
saturation is determined by the liquid saturation, these variables may be related by a water retention
law for unsaturated geomaterials. A common choice is the van Genuchten equation [61], given by

S l(pca) = S l
1 + (S l

2 − S l
1) [1 + (pca/αca)n]

−m . (47)

�is equation requires fourmaterial parameters: the residual liquid saturation S l
1 ≥ 0, themaximum

liquid saturation S l
2 ≤ 1, the scaling capillary pressure αca, and the exponent n. Another exponent

m is related to n via m = 1 − 1/n. �is equation is originally developed for geomaterials in�ltrated
by freshwater, so it may be unable to accommodate some important aspects emerging from crystal
growth in pores. However, the e�ects of crystallization on the retention behavior have only become
a subject of research recently (e.g., [62]), and they are still far from being encapsulated into a water
retention equation. For this reason, the original vanGenuchten equation is used herein, but it can be
modi�ed easily when the e�ects of in-pore crystals become quanti�ed. On a related note, Derluyn
et al. [20] also used the van Genuchtenmodel and their simulation results showed good agreements
with experimental data even when salt minerals were crystallized. Also noted is that a very recent
phase-�eld model employing the van Genuchten equation has successfully reproduced qualitative
patterns of drying-induced cracks, see Cajuhi et al. [51].

�e variables contained in the fourth group of energy-conjugate pairs are the relative velocity,
pressure, and volume fractions of every phase inside the pores. �ismeans that we need constitutive
laws for �ows of pore-�lling phases relative to the solid matrix. For the liquid solution, we use the
multiphase extension of Darcy’s law, which can be written as

ql = −
kr
µl
k(∇ pl − ρl g) , (48)

where ql = ϕl ṽ l is the seepage velocity, µl is the dynamic viscosity of the liquid solution, kr is the
relative permeability, and k is the second-order absolute permeability tensor. We assume that the
permeability tensor of the intact solid matrix is isotropic, i.e., k = k1, and will discuss its anisotropic
evolution by fracturing in the next section. Usually k is assumed to be constant when the solid
deformation is in�nitesimal. In our problem, however, crystals can clog much of the pore space.
To accommodate this clogging e�ect, here we consider k a function of pore volume, adopting the
Kozeny–Carman equation. �e equation can be written in a normalized form

k = k0 (
(1 − ϕ0)2

ϕ30
)(

ϕ3
(1 − ϕ)2

) , (49)
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where ϕ = 1 − ϕs is the porosity, and k0 and ϕ0 are the reference values of the absolute permeabil-
ity and the porosity, respectively. �e relative permeability is regarded as a function of saturation.
When the water retention behavior is modeled by the van Genuchten equation, the relative perme-
ability can be expressed as

kr = θ1/2 [1 − (1 − θ1/m)m]2 , θ =
S l − S l

1

S l
2 − S l

1
. (50)

�e relative �ow of the dissolved mineral is comprised of convective and di�usive/dispersive parts,
as in Eq. (15). �e convective part is described byDarcy’s law for the liquid solution presented above.
For the di�usive/dispersive part, we introduce a linear di�usion equation

j = −ρlD∇ c , (51)

where D is the di�usion coe�cient for the dissolved minerals. For this coe�cient we adopt an
equation used in Derluyn et al. [20], which takes the form of D = (Dm/τ)(1 − ϕs)(S l)1.6 with Dτ
being themolecular di�usivity of themineral and τ being the tortuosity of the porousmedia. Inwhat
follows, we shall assume that the gas pressure is atmospheric (i.e, pg ≈ 0) and that the relative velocity
of the crystal is negligibly small (i.e., ṽc ≈ 0). �ese assumptions, which have been introduced to
other poromechanical models as well (e.g., [55, 63]), allow us to neglect constitutive laws for the
relative �ows of the gas and crystal phases.
Lastly, the ��h group of energy-conjugate pairs contains the rate of mass exchange, intrinsic

density, pressure, and relative velocity of each phase inside the pores. Becausemc = −ml andmg = 0,
we only need to consider a constitutive law for mc. It is noted that the velocity has already been
related to the pressure, and the pressure related to the saturation. �is means that a constitutive law
that relates the mass exchange, density, and saturation terms can satisfy this energy-conjugacy. In
fact, by de�nition, such a constitutive law corresponds to a kinetic equation for crystal growth and
dissolution. Here we adopt the kinetic equation proposed by Espinosa-Marzal et al. [64], which has
later become the common choice of computational salt crystallization models (e.g., [20, 22, 54]).
�is equation can be expressed as

mc =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(1 − ϕs)S lKc(U −Uthr)gc if U ≥ Uthr ,

−(1 − ϕs)S lKc(1.0 −U)gc if U < 1 and Sc > 0 ,
(52)

where Kc > 0 and gc > 0 are kinetic parameters,U ≥ 0 is the supersaturation ratio, andUthr ≥ 1 is the
threshold value of U for crystal growth which depends on the type of mineral. Usually Uthr ≥ 1 for
primary crystallization but Uthr = 1 once the crystallization process has begun. Multiple de�nitions
are possible for the supersaturation ratio U , and here we de�ne U = c/c0 to be consistent with
Eq. (46). Note that the �rst equation in Eq. (52) represents a crystal growth process (mc ≥ 0 if
U ≥ Uthr), whereas the second equation represents a crystal dissolution process (mc < 0 ifU < 1 and
Sc > 0). Note, however, that complex changes in thematerial’s internal structure by dissolution (e.g.,
the formation of a sensitive clay by leaching) are beyond themodeling capacities of this formulation
employing linear elasticity.
So far, we have developed a general modeling framework for coupled chemo-hydro-mechanical

processes in �uid-in�ltrated porousmaterials containing dissolved and crystallizedminerals. In do-
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ing so, we have constructed a particular class of the framework by selecting a set of constitutive laws.
It is again noted that our selection is just a speci�c choice, and other sets of constitutive laws would
work equally well. Similarly, while we adopt a phase-�eld approach to fracture in the following,
other approaches for similar purposes are also compatible with our development herein.

4. Phase-�eld formulation for fracture

In this section, we present a phase-�eld model of fracture driven by the e�ective stress derived
in the previous section. To be consistent with the foregoing continuum mechanics approach, here
we derive the phase-�eld model as a balance law of microforces. Microforce balance derivations of
phase-�eld models of fractures have been presented in several previous studies [36, 40, 41, 45, 52].
Among them, we adopt the derivation procedure of Choo and Sun [52], which di�ers from other
microforce derivations because it views crack growth as a thermodynamically irreversible process.
�e motivation and implication of this derivation are explained in detail in Choo and Sun [52].
Without loss of generality, in this section we consider a “dry” porous solid in which the liquid,

gas, and crystal phases are absent. �is simpli�cation is just to prevent proliferation of numerous
terms unrelated to the fracturing process. Again, an important premise in continuum poromechan-
ics is that all mechanical processes—including the fracturing process which we will describe as the
evolution of the phase-�eld variable—are driven by the e�ective stress. �is means that terms other
than the e�ective stress and its related ones will not a�ect the formulation that follow. �us, for
brevity, the terms unrelated to the deformation and fracture of the solid matrix are omitted in this
section.

4.1. Phase-�eld approximation of fracture surfaces
We �rst introduce a phase-�eld approximation of fracture geometry, which, in essence, is an

approximation of a sharp discontinuity as a di�use interface. Let Γ denote a set of discontinuous
fractures inside the body Ω. �e total area of the fracture surfaces is given by

AΓ = ∫Γ dA , (53)

which is an area integral over Γ. Calculating this integral during the evolution of fracture is an
infeasible task because tracing the change of Γ is extremely di�cult inmost cases. To circumvent this
di�culty, we seek to transform an area integral over the evolving domain Γ into a volume integral
over the �xed domain Ω. For this purpose we de�ne a phase-�eld variable d ∈ [0, 1], which denotes
an intact state by d = 0 and a fully cracked state by d = 1. Naturally d can be understood as a
damage variable. Using this phase-�eld variable, we introduce a crack density functional Γd(d ,∇ d)
such that

AΓ ≈ AΓd = ∫Ω Γd(d ,∇ d)dV , (54)

where the last integral is de�ned over the volume Ω. In this work, we adopt a widely used crack
density functional of the form

Γd(d ,∇ d) = d2
2l

+
l
2
∣ ∇ d∣2 , (55)
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where l > 0 is the length parameter for the phase-�eld regularization. �e smaller the length pa-
rameter l , the closer the phase-�eld approximation to the original sharp discontinuity.

4.2. Balance law derivation of phase-�eld evolution
To derive a governing equation for the phase-�eld variable, we make use of the microforce ap-

proach developed by Gurtin [65], which has proven useful to derive phase-�eld models [36, 40, 41,
45, 52] and other types of models [66, 67] within the framework of continuummechanics. �e �rst
step of this approach is to postulate the existence of a microforce system in which the phase-�eld
variable d (referred to as the order parameter in [65]) is energy-conjugate to an internal microforce
π and a surface microforce ζ . Consider an arbitrary volume V with boundary ∂V in this microforce
system. �e balance of microforce over the volume V is given by

∫∂V ζ dA+ ∫V π dV = 0 . (56)

Denoting the unit normal vector of ∂V by n, we also introduce a microforce traction vector ξ such
that ζ = ξ ⋅n. �en, by applying the divergence theorem and noting the arbitrariness of V , we obtain
a localized form of Eq. (56) as

∇ ⋅ ξ + π = 0 . (57)

�e internal and surface microforces, which are energy-conjugate to the phase-�eld variable d,
should evolve such that this balance law is satis�ed. �erefore this microforce balance law serves
as a governing equation for the evolution of phase �eld—equivalently, the damage and fracturing
process. In the following, we derive speci�c forms of π and ξ based on thermodynamic arguments.

�e mechanical power in the microforce system is given by

P̃m = ∫∂V(ξ ⋅ n) ⋅ ḋ dA = ∫V(ξ ⋅ ∇ ḋ − πḋ)dV . (58)

Incorporating this additional mechanical power as well as keeping the e�ective stress power only,
we can rewrite the balance of energy as

ρė = σ ′ ∶ ε̇ + ξ ⋅ ∇ ḋ − πḋ . (59)

Wewill exploit the second lawof thermodynamics to derive expressions for the e�ective stress tensor
and the microforce variables. To this end, we �rst consider a stored energy density function of the
form

ψ(ε, d) = g(d)W(ε) . (60)

Here, W(ε) denotes the strain energy stored in the undamaged material, and g(d) ∈ [0, 1] is a
so-called degradation function which should satisfy g(0) = 1 and g(1) = 0. For now we consider
general forms ofW(ε) and g(d), and will discuss their speci�c forms later in this section.
At this point, it is noted that the energy used to create a fracture surface does not enter the stored

energy function because crack growth is considered fully dissipative a priori herein. �is is consis-
tent with the stored energy functions used in variational frameworks for fracture (e.g., [33, 68]),
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but di�erent from those assumed in other balance law derivations of phase-�eld models based on
microforce arguments [36, 40, 41, 45]. More speci�cally, the stored energy functions in previous
balance law derivations contain the fracture energy, so their derivations lead to a thermodynamic
implication that crack growth is a reversible process in a rate-independent setting. �is implication
would be appropriate for clean fracture surfaces that can heal under highly controlled conditions.
However, here we prefer to view crack growth as an irreversible process, since crack healing phe-
nomena in geomaterials are usually inconsistent with the thermodynamic de�nition of a reversible
process. See Choo and Sun [52] for a more detailed discussion on this aspect.
Having de�ned the stored energy density, we can write the dissipation inequality as

D = σ ′ ∶ ε̇ + ξ ⋅ ∇ ḋ − πḋ − ψ̇ ≥ 0 . (61)

�e time derivative of the stored energy function is given by

ψ̇(ε, d) = ∂ψ
∂ε

∶ ε̇ + ∂ψ
∂d

ḋ . (62)

Substituting Eq. (62) into Eq. (61), we get an alternative expression for the dissipation inequality as

D = (σ ′ − ∂ψ
∂ε

) ∶ ε̇ − (π − ∂ψ
∂d

) ḋ + ξ ⋅ ∇ ḋ ≥ 0 . (63)

To ensure non-negative dissipation of the stress power irrespective of ε̇, the e�ective stress should
be related to the stored energy. �is standard argument leads to a hyperelastic relation of the form

σ ′ = ∂ψ
∂ε
. (64)

Next, as done in [66, 67] for deriving other types of models, we assume that the internal microforce
is additively decomposed into two parts, the energetic (non-dissipative) part πen and the dissipative
part πdis. In other words, π = πen + πdis. �e same argument that we used to get Eq. (64) yields the
following expression for the energetic part:

πen = −∂ψ
∂d
. (65)

Inserting Eqs. (64) and (65) into Eq. (63) gives the reduced dissipation inequality of the form

Df = ξ ⋅ ∇ ḋ − πdisḋ ≥ 0 . (66)

Because the material is considered elastic, the dissipation is solely attributed to the evolution of the
phase-�eld variable d, or crack growth.
To arrive at speci�c expressions for ξ and πdis, we now postulate that cracks are created in a way

that they maximize the energy dissipation. �is postulate is consistent with the Gri�th theory of
brittle fracture [69], and has been central to several variational frameworks for phase-�eld fracture
(e.g., [33, 68]). Our task is then to �nd expressions for the microforce variables that maximize
Df de�ned in Eq. (66). Equivalently, we seek to minimize the negative of the reduced dissipation
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functional, given by

−Df = −ξ ⋅ ∇ ḋ + πdisḋ ≤ 0 . (67)

�e arguments of this functional, ḋ and∇ ḋ, are indeed subject to a constraint in that these variables
should form a phase-�eld approximation of fracture. �e speci�c expression for this constraint can
be obtained by taking time derivative of the crack density functional, Eq. (55). �is procedure gives

Γ̇d(d ,∇ d) = (
d
l
) ḋ + l ∇ d(∇ ḋ) . (68)

In the cases we consider, Γ̇d(d ,∇ d) ≥ 0 (crack irreversibility) and Γ̇d(d ,∇ d) < ∞ (�nite speed of
crack propagation). Given this constraint, we can write a Lagrangian for this constrainedminimiza-
tion problem as

L(ḋ ,∇ ḋ , λ) = −ξ ⋅ ∇ ḋ + πdisḋ + λ [(
d
l
) ḋ + l ∇ d(∇ ḋ) − Γ̇d] , (69)

where λ is the Lagrange multiplier of this problem. Invoking the stationary condition of this La-
grangian gives expressions for ξ and πdis as follows:

δ∇ ḋL = −ξ + λl ∇ d = 0 → ξ = λl ∇ d , (70)

δḋL = πdis + λ (
d
l
) = 0 → πdis = −λ (

d
l
) . (71)

�e remaining task is to identify the meaning of the Lagrangian multiplier, λ, in the context of
our problem. To this end, we substitute the results of Eqs. (70) and (71) intoDf in Eq. (66), which is
the energy dissipation per unit volume. Integrating the resulting dissipation density over the domain
Ω with the crack surface Γd gives

∫ΩDf dV = ∫Ω λ [(
d
l
) ḋ + l ∇ d(∇ ḋ)] dV = ∫Ω λΓ̇d dV ≈

d
dt ∫Γd λ dA ≥ 0 , (72)

where the last approximation is attributed to the phase-�eld regularization of discontinuous sur-
faces. Equation (72) shows that the Lagrangemultiplier λ can be interpreted as the energy dissipated
by the creation of unit crack surface area. By de�nition, this energy corresponds to the critical frac-
ture energy in fracture mechanics.
Let Gc denote the critical fracture energy. Now we can express the internal microforce as

π = πen + πdis , πen = −∂ψ
∂d

= −g′(d)W(ε) , πdis = −Gc (
d
l
) , (73)

and the microforce traction vector as

ξ = Gc l∇ d . (74)

Substituting these expressions into Eq. (57), we can rewrite the governing equation for the phase-
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�eld variable as

−g′(d)W(ε) − Gc (
d
l
− l ∇ ⋅ (∇ d)) = 0 . (75)

Notably, this equation is the same as the governing equation for a phase-�eld model of brittle, rate-
independent fracture obtained by variational and other balance law approaches, see [33, 34, 36, 41]
for example.

4.3. Stored energy function
Now we consider speci�c expressions for the stored energy function, ψ(ε, d) = g(d)W(ε).

�e stored energy function is central to the phase-�eld model of fracture since it determines the
e�ective stress tensor σ ′, as in Eq. (64), and the energetic force driving the evolution of the phase-
�eld variable d, as in Eq. (73).
First, as for the degradation function g(d), we adopt the form most widely used by the phase-

�eld modeling community, given by

g(d) = (1 − d)2 . (76)

It is noted that other forms of degradation functions have also been suggested, e.g., the cubic degra-
dation proposed by [40].
Next, we need to determine a suitable form of W(ε), the strain energy function decoupled

from the phase-�eld variable. In doing so, we should take into account that for physically real-
istic results, the strain energy associated with pure compression should not give rise to fractur-
ing. For this reason, previous studies have proposed to decompose the stored energy function as
W(ε) =W+(ε)+W−(ε), whereW+(ε) is the fracturing part related to the tensile strain energy, and
W−(ε) is the non-fracturing part related to the compressive strain energy. �is decomposition has
beenmainly done via either of the following two schemes: one that uses the sign of principal strains
proposed by Miehe et al. [33], and another that uses a volumetric–deviatoric split of the strain en-
ergy function proposed by Amor et al. [32]. Here we use the former one, and decompose the stored
energy function of a linear elastic material as

W+(ε) = 1
2

λ̄⟨tr(ε)⟩2+ + µ̄
3
∑
a=1

⟨εa⟩2+ , W−(ε) = 1
2

λ̄⟨tr(ε)⟩2− + µ̄
3
∑
a=1

⟨εa⟩2− , (77)

where ⟨⋅⟩± = (⋅ ± ∣ ⋅ ∣)/2, λ̄ and µ̄ are the Lamé parameters, and εa are the principal strains.
A�er decomposing the strain energy as above, we apply the degradation function to the fractur-

ing part only, i.e.,

ψ(ε, d) = g(d)W+(ε) +W−(ε) . (78)

�en the e�ective stress is expressed as

σ ′ = ∂ψ(ε, d)
∂ε

= g(d)∂W+(ε)
∂ε

+
∂W−(ε)
∂ε

. (79)
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Likewise, the energetic microforce is expressed as

πen = −
∂ψ(ε, d)

∂d
= −g′(d)W+(ε) . (80)

Note that πen does not take the non-fracturing part of the strain energy,W−(ε).

4.4. �ermodynamic restriction and crack irreversibility
Our derivation leads to an expression for the dissipation inequality which needs to be satis�ed

for thermodynamic consistency. Rewriting Eq. (66), we can express the rate of energy dissipation
in a unit volume as

Df = Gc Γ̇d ≥ 0 . (81)

Because Gc > 0 by de�nition, this is equivalent to

Γ̇d ≥ 0 , (82)

which means that crack growth should be irreversible, as we postulated in the beginning of this
derivation. Integrating this equation over the entire domain leads to an expression that is identical
to the crack irreversibility condition presented in variational frameworks for phase-�eld fracture
(e.g., Eq. (20) of Miehe et al. [33]). �us it can be concluded that our balance law derivation is
consistent with the variational derivation with respect to the thermodynamic implication as well as
the governing equation. Eq. (82) can also be written as

(
d
l
) ḋ + l ∣ ∇ d∣∣ ∇ ḋ∣ ≥ 0 , (83)

where we use an alternative form of the time derivative of the nonlocal term in the crack density
functional. �e above equation shows that the crack irreversibility condition boils down to ḋ ≥ 0.
To enforce this crack irreversibility condition, ḋ ≥ 0, we adopt the approach proposed by Miehe

et al. [34]. �e approach is to make the energetic force driving the phase-�eld evolution, which is
denoted by πen in our derivation, a non-decreasing function even asW+(ε) is decreasing. Following
this idea, we introduce a strain energy history functionalH ≥ 0 subject to the Karush–Kuhn–Tucker
condition of

W+ −H ≤ 0 , Ḣ ≥ 0 , Ḣ(W+ −H) = 0 . (84)

Simply speaking,H is the maximum of the fracturing part of the strain energy during the course of
loading. Replacing the stored energy term in Eq. (75) withH gives a modi�ed phase-�eld equation
of the form

−g′(d)H − Gc (
d
l
− l ∇ ⋅ (∇ d)) = 0 . (85)

Eq. (85) will be used as the governing equation for the phase-�eld model in the sequel.
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4.5. Permeability evolution by phase-�eld fracture
Phase-�eld modeling of fracture in �uid-in�ltrated porous media should take into account the

impact of the fracturing process on �uid �ow. Several types of approaches have been proposed for
this purpose but with di�erent emphases (e.g., [38, 39, 42, 44, 46, 47, 49]). Most of them are con-
cerned with hydraulic fracturing whereby the rate of mass transfer between the fracture and matrix
systems (leak-o�) is o�en far lower than the �uid injection rate. �e problem at hand, however,
involves a quite di�erent situation in that here crystal growth inmatrix pores slowly drives fractures
and signi�cant �uid �ow between the fracture and matrix systems is expected. In addition, we face
a new problem that growing crystals increasingly clog the fracture aperture. �us, an approach that
views the fracture and matrix pores as a whole—rather than distinguished domains described by
separate governing equations—would be more appropriate for our purpose.
Given these considerations, here we take an approach that augments an anisotropic permeability

tensor describing Poiseulle �ow to the absolute permeability tensor in Eq. (48). Such an approach
has been advocated by Miehe and Mauthe [39, 47] andWang and Sun [70], among others. We now
write the absolute permeability tensor as

k = kmatrix + d2kfrac . (86)

Here, kmatrix is the isotropic permeability tensor of the solid matrix which we have discussed in the
previous section. On the other hand, kfrac is anisotropic, and given by

kfrac =
w2
12

(1 − n⊗ n) , (87)

where n = ∇ d/∣∇ d∣ is the unit normal vector perpendicular to the fracture direction, and w is
the hydraulic aperture. Note that the hydraulic aperture herein should be a function of the crystal
fraction as well as the fracture width. For simplicity, we assume that the aperture can be given by
(1− Sc)w̄, where w̄ is the hydraulic aperture in the absence of crystals. For w̄, we adopt an equation
proposed by Miehe and Mauthe [39], specializing it to in�nitesimal deformation conditions. �e
resulting form of the hydraulic aperture w is given by

w = (1 − Sc)l�(n ⋅ ε ⋅ n) (88)

where l� is the characteristic length of a line element perpendicular to the fracture. For simplicity,
we assign l� to be the mesh size h as in Miehe and Mauthe [39].

4.6. Estimation of phase-�eld modeling parameters for geomaterials
Lastly, we describe how the phase-�eld modeling parameters are estimated in this work. A stan-

dard phase-�eld model of fracture requires two parameters: (1) the critical fracture energy Gc, and
(2) the length parameter l . While the two parameters have di�erent origins—the former is from
fracture mechanics theory and the latter is from a phase-�eld approximation of fracture—they to-
gether determine the fracturing response of a material [32, 35, 40, 71]. In particular, the peak stress
under tension, which is usually reckoned as the tensile strength, is controlled by the fracture en-
ergy, length parameter, and elasticity moduli. It is thus of signi�cant importance to assign a suitable
combination of the phase-�eld modeling parameters. Among them, however, the length parameter
is uneasy to estimate because it is not a physically measurable quantity.
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Here we devise a way to estimate the length parameter for geomaterials, drawing on an empir-
ical relationship between the tensile strength and the fracture toughness. Let σt denote the tensile
strength of a geomaterial and KIc denote its mode I fracture toughness. Experimental studies have
found that, for many geomaterials under quasi-static conditions, the two properties are well corre-
lated as a linear function [72–74], given by

KIc = βσt , (89)

where β is the linear regression coe�cient having a unit of square root meter. Example values of β
are 0.1453 for dozens of so� to hard rocks [73] and 0.3546 for compacted clays tested by Wang et
al. [74]. �is relationship usually shows a coe�cient of determination, r2, around 0.9. At the same
time, the tensile strength of a phase-�eld model is determined by the two parameters, Gc and l , and
Young’s modulus, E. When the degradation function is g(d) = (1−d)2, the tensile strength is given
by [32, 35]

σt =
9
16

√
EGc
3l
. (90)

Also, Gc and KIc in linear elastic materials are related as

Gc =
K2IC
E′
, (91)

where E′ = E for plane stress and E′ = E/(1 − ν2) for plane strain. Substituting Eqs. (90) and (91)
into Eq. (89) and solving for l yields

l = 27
256

(
E
E′

) β2 . (92)

Here, the unit of l is meter because β is given by a square root meter. �is equation allows us to
estimate l from experimental data of σt andKIc. Oncewe have estimated l in this way and known the
tensile strength and elasticity parameters, we can �nd the corresponding value of Gc from Eq. (90).
Interestingly, Eq. (92) suggests that the length parameter is related to the relationship between

the tensile strength and the mode I fracture toughness, rather than the values of these properties.
Given that the linear relationship (89) has been found for many types of geomaterials (though not
necessary valid for all types of geomaterials, see [75]), Eq. (92) may serve as a useful guide to set a
length parameter for phase-�eld modeling of fracture in geomechanical problems.

5. Discrete formulation

�is section develops a discrete formulation for numerical solution of the chemo-hydro-mechanics
and phase-�eld model described so far. We begin by stating the governing equations and the rele-
vant initial-boundary value problem. For robust and accurate spatial discretization of the coupled
problem, we use the �nite element method for the deformation and fracture problem (momen-
tum balance and phase-�eld equations), and the �nite volume method for the �ow and transport
problem (mass balance equations). �e resulting discrete system is solved by a staggered scheme
that sequentially updates the chemo-hydro-mechanics problem and the phase-�eld problem. To
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facilitate monolithic solution of the coupled chemo-hydro-mechanics problem, we design a block-
partitioned preconditioner which signi�cantly speeds up iterative linear solvers.

5.1. Governing equations
�ecoupled problem at hand is furnished by �ve governing equations that follow. �e �rst one is

the balance equation for linearmomentum in themixture. For simplicity we shall neglect the e�ects
of inertial forces and crystallization kinetics on the linear momentum. Substituting the expression
for e�ective stress in Eq. (38) into Eq. (21), we express the balance of linear momentum

∇ ⋅ (σ ′ − Bp̄1) + ρg = 0 . (93)

�e second governing equation is the mass balance for the liquid solution, which was originally
given by Eq. (10). Since ρ l = (1 − ϕs)S lρl , we can expand this equation as

(1 − ϕs)(ρl Ṡ l + S l ρ̇l) − S lρl(ϕ̇s + ϕs∇ ⋅v) + S lρl ∇ ⋅v +∇ ⋅w l = ml . (94)

Here, the second product can be simpli�ed using the Biot coe�cient B. To wit, we can rewrite
Eq. (33) as

ϕ̇s + ϕs∇ ⋅v = (1 − B)∇ ⋅v , (95)

and insert this equation into Eq. (94). �en the liquid mass balance equation takes the form

(1 − ϕs)(ρl Ṡ l + S l ρ̇l) + S lρlB∇ ⋅v +∇ ⋅w l = ml . (96)

In case ρ̇l and ml = 0, the above equation degenerates to the mass balance equation of unsaturated
poromechanics for shallow water problems [24, 76].

�ird, we consider the mass balance equation for the dissolved minerals. Because ρd = cρ l , the
mass balance equation can be rewritten as

ρ l ċ + c(ρ̇ l + ρ l ∇ ⋅v) + ∇ ⋅ (cw l) + ∇ ⋅ j = md . (97)

In the above we have shown that

ρ̇ l + ρ l ∇ ⋅v = (1 − ϕs)(ρl Ṡ l + S l ρ̇l) + S lρlB∇ ⋅v . (98)

Substituting the above equation and md = ml into Eq. (97) gives

ρ l ċ + c(1 − ϕs)(ρl Ṡ l + S l ρ̇l) + cS lρlB∇ ⋅v +∇ ⋅ (cw l) + ∇ ⋅ j = ml , (99)

which is a transient advection–di�usion equation for the mass fraction, c.
�e fourth governing equation is the mass balance for the crystals in pores. Given that ρc =

(1 − ϕs)Scρc and wc has been assumed to be zero, we can rewrite Eq. (13) as

(1 − ϕs)ρc Ṡc − Scρc(ϕ̇s + ϕs∇ ⋅v) + Scρc∇ ⋅v = mc , (100)
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Again, by appealing to Eq. (95), we get

(1 − ϕs)ρc Ṡc + ScρcB∇ ⋅v = mc . (101)

Last, specifying g′(d) = −2(1 − d), we rewrite the phase-�eld governing equation as

2(1 − d)H − Gc (
d
l
− l ∇ ⋅ (∇ d)) = 0 . (102)

As for the primary variables of these governing equations, we select the following �ve �elds: the
displacement vector of the solid matrix u, the pore pressure of the liquid solution p ∶= pl , the mass
fraction of the dissolved minerals c, the saturation ratio of the crystals s ∶= Sc, and the phase-�eld
variable d.
We complete the statement of the problem by prescribing boundary and initial conditions as

follows. Let Ω denote the domain of interest and ∂Ω denote its boundary. �e boundary is suit-
ably decomposed as: displacement and traction boundaries, ∂Ωu and ∂Ωt ; pressure and liquid �ux
boundaries, ∂Ωp and ∂Ωq; and mass fraction and mineral �ux boundaries, ∂Ωc and ∂Ω j. �ese
decomposed boundaries satisfy ∂Ω = ∂Ωu ∪ ∂Ωt = ∂Ωp ∪ ∂Ωq = ∂Ωc ∪ ∂Ω j and ∅ = ∂Ωu ∩ ∂Ωt =

∂Ωp ∩ ∂Ωq = ∂Ωc ∩ ∂Ω j. �e boundary conditions are given by

u = û on ∂Ωu (103)
n ⋅ σ = t̂ on ∂Ωt (104)

p = p̂ on ∂Ωp (105)
−n ⋅w l = q̂ on ∂Ωq (106)

c = ĉ on ∂Ωc (107)
−n ⋅ (cw l + j) = ĵ on ∂Ω j , (108)

where n is the unit outward normal vector and the hats denote the prescribed boundary values. �e
initial conditions are given by

u = u0(x) , p = p0(x) , c = c0(x) , (109)

for all position vectors x ∈ Ω at time t = 0. For s and d, we consider no �ux boundary conditions
and zero initial conditions throughout.

5.2. Time discretization
We begin the discretization process by approximating the time derivatives in the residuals of

mass balance for liquid, dissolved mineral, and crystals. Given that the chemical, hydrological, and
mechanical processes in our problem may involve a variety of time scales, we use an uncondition-
ally stable, �rst-order backward Euler method. Consider a time increment ∆t from tn to tn+1. We
discretize the time derivatives of the primary variables as

v = u̇ =
un+1 − un

∆t
, ṗ = pn+1 − pn

∆t
, ċ = cn+1 − cn

∆t
, Ṡc =

Scn+1 − Scn
∆t

, (110)
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and the time derivatives of liquid saturation and liquid density as Ṡ l = (S l
n+1 − S l

n)/∆t and ρ̇l =

(ρl ,n+1 − ρl ,n)/∆t. All other variables are evaluated at time n + 1. For notational simplicity, herea�er
we drop the subscript n + 1 for quantities at time tn+1.

5.3. Space discretization
For space discretizationwe use the �nite elementmethod for the deformation and fracture prob-

lem (momentum balance and phase-�eld equations) and the �nite volume method for the �ow and
transport problem (mass balance equations). �is combination is motivated by mathematical na-
tures of the two problems. �e deformation and fracture problem is described by elliptic equations,
so its discretization by the �nite element method is an optimal choice. On the other hand, the �ow
and transport problem involves hyperbolic systems, for which the �nite volume method is usually
more appropriate than the (continuous) �nite element method. �is is mainly because �nite vol-
ume discretization is robust in the presence of sharp gradients in the solution �elds as well as locally
mass conservative at the element level.
We use a single mesh for both �nite element and �nite volume discretization, as shown in

Fig. 4. �e degrees of freedom for the deformation and fracture unknowns—the displacement vec-
tor and the phase �eld—are located at the element nodes, whereas those for the �ow and transport
unknowns—the pressure, mass fraction, and crystal saturation—are located at the element center.

Finite element degrees of freedom 
(displacement vector/phase field)

Finite volume degrees of freedom 
(pressure/mass fraction/crystal saturation)

Figure 4: An example mesh illustrating the locations of (linear) �nite element and �nite volume degrees of freedom.

To begin �nite element discretization of the deformation and fracture problem, we de�ne the
spaces of the trial solutions for u and d as

Su = {u ∶ Ω → Rdim ∣ u ∈ H1, u = û on ∂Ωu} , (111)
Sd = {d ∶ Ω → R ∣ d ∈ H1} , (112)

where H1 is the Sobolev space of order one. Accordingly, the spaces of the weighting functions are
de�ned as

Vu = {η ∶ Ω → Rdim ∣ η ∈ H1, η = 0 on ∂Ωu} , (113)
Vd = {φ ∶ Ω → R ∣ φ ∈ H1} . (114)

�rough the standardweighted residual procedure, we can readily develop the variational equations
of the deformation and fracture problem as

Rmom = ∫Ω∇s η ∶ σ ′ dV − ∫Ω Bp̄ ∇ ⋅ η dV − ∫Ω η ⋅ ρg dV − ∫∂Ωt
η ⋅ t̂ dA = 0 , (115)
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Rfrac = ∫Ω φ[2(1 − d)H]dV − ∫Ω
Gc

l
[φ + l2(∇φ ⋅ ∇ d)]dV = 0 . (116)

Here, we have presented the variational equations as residuals to solve these equations via Newton’s
method later. We then perform �nite element discretization of Eqs. (115) and (116), and obtain the
discrete residual vectors by assembling element contributions. �e contributions of element e are
given by

[Rmom]e = ∫Ωe
∇s ηi ∶ σ ′ dV − ∫Ωe

Bp̄ ∇ ⋅ ηi dV − ∫Ωe
ηi ⋅ ρg dV − ∫∂Ωe

t

ηi ⋅ t̂ dA = 0 , (117)

[Rfrac]e = ∫Ωe
φi[2(1 − d)H]dV − ∫Ωe

Gc

l
[φi + l2(∇φi ⋅ ∇ d)]dV = 0 , (118)

where i denotes a shape function index. We use standard linear shape functions in this work.
Next, we discretize the �ow and transport problem via the �nite volume method, on the same

mesh used in the �nite element discretization. We integrate the mass balance equations over each
element, apply the divergence theorem to the �uid �ux terms, andmultiply the residuals by the time
increment ∆t. Element-wise contributions of the discrete mass residuals are then obtained as

[Rmass,l]e = ∫Ωe
(1 − ϕs)[ρl(S l − S l

n) + S l(ρl − ρl ,n)]dV + ∫Ωe
S lρlB∇ ⋅ (u − un)dVdV

− ∆t ∫Ωe
ml dV + ∆t ∫∂Ωe

w l ⋅ ne dA− ∆t ∫∂Ωe
q

q̂ dA = 0 , (119)

[Rmass,m]e = ∫Ωe
ρ l(c − cn)dV + ∫Ωe

c(1 − ϕs)[ρl(S l − S l
n) + S l(ρl − ρl ,n)]dV

+ ∫Ωe
cS lρlB∇ ⋅ (u − un)dV − ∆t ∫Ωe

ml dV

+ ∆t ∫∂Ωe
(cw l) ⋅ ne dA+ ∆t ∫∂Ωe

j ⋅ ne dA− ∆t ∫∂Ωe
j

ĵdA = 0 , (120)

[Rmass,c]e = ∫Ωe
(1 − ϕs)ρc(Sc − Scn)dV + ∫Ωe

ScρcB∇ ⋅ (u − un)dV − ∆t ∫Ωe
mc dV = 0 , (121)

where ne is the outward normal to the boundary of element e. As depicted in Fig. 4, the interpolation
functions for the pressure, mass fraction, and crystal saturation �elds take a constant value of 1
over element e and 0 at all other elements. �us the volume integrals can be evaluated much like
integrating �nite elements with a piecewise constant shape function.

�e surface �ux integrals are evaluated as a sum of interelement �uxes between element e and
its neighboring elements f . Let nface denote the number of faces of element e and ne f denote the
outward normal vector at the interface ∂Ωe f . �e integral of the liquid mass �ux is then expressed
as

∫∂Ωe
w l ⋅ ne dA =

nface
∑
f=1
∫∂Ωe f

w l ⋅ ne f dA =

nface
∑
f=1

(wl)
e f . (122)

We apply a two-point �ux approximation scheme for multiphase �ow in porous media as described
in [77, 78]. Since w l is governed by Darcy’s law, (wl)

e f is given by

(wl)
e f = Γe f (Φe −Φ f ) . (123)
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Here, Φe = pe + (ρl)
e gze and Φ f = p f + (ρl)

f gz f are the �ow potentials at elements e and f ,
respectively, where g denotes the gravitational acceleration and z denotes the elevations. Γe f is
the transmissibility at the interface ∂Ωe f , which is multiplicatively decomposed into the geometric
transmissibility T e f and the �uid mobility (λl)

e f as

Γe f = T e f (λl)
e f . (124)

�e geometric transmissibility T e f is estimated from the harmonic average of permeabilities of el-
ements e and f

T e f =
Ae f

l e/ke + l f /k f , (125)

where Ae f is the area of the interface ∂Ωe f , l e and l f are the distances between the center of the in-
terface and the center of elements e and f , respectively, and ke and k f are permeabilities of elements
e and f , respectively. Note that this term is independent of the �ow direction. On the other hand,
the �uid mobility (λl)

e f is evaluated in an upstream weighting (upwinding) manner as follows:

(λl)
e f =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ρe
l ker /µe

l if Φe > Φ f ,

ρ f
l k

f
r /µ f

l otherwise .
(126)

�e remaining �ux terms can be computed in a similar manner. For evaluating the surface integral
of cw l ⋅ne , ce or c f is multiplied to (λl)

e f in Eq. (126) depending on the �ow direction. Modi�cation
of the above equations to calculate the interelement �uxes of j = −ρlD∇ c is straightforward, and
omitted for brevity.

5.4. Fully discrete form and staggered scheme for phase �eld
We now develop the matrix form of the discrete residuals as a linear system that needs to be

solved in each Newton iteration. In doing so, we split the overall system into two parts—the phase-
�eld part and the rest—and apply a staggered solution method developed for phase-�eld modeling
of fracture. �e primary motivation of using a staggered scheme is its computational robustness: it
is far more convergent than a monolithic scheme during the evolution of phase-�eld fracture. Such
robustness is particularly more desirable for phase-�eld modeling of fracture in strongly coupled
multiphysics problems [36, 68]. �e phase-�eld system, which is uncoupled from other variables,
is given by

Jdd ∆d = −Rfrac , (127)

where Jdd is the Jacobian matrix of Rfrac with respect to the phase-�eld variable d, and ∆ denotes a
Newton increment. Indeed the phase-�eld system is linear, so d can be updated by solving Eq. (127)
once. Next, the rest part—the chemo-hydro-mechanics system—is given by the following block-
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partitioned system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Juu Jup Juc Jus
Jpu Jpp Jpc Jps
Jcu Jcp Jcc Jcs
Jsu Jsp Jsc Jss

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆u
∆p
∆c
∆s

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rmom
Rmass,l
Rmass,d
Rmass,c

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (128)

where J(⋅)(⋅) denotes a sub-matrix in the Jacobian matrix. Speci�c expressions for the sub-matrices
are straightforward to obtain and omitted for brevity. �is chemo-hydro-mechanics system is usu-
ally nonlinear due to water retention characteristics and crystallization kinetics, among other rea-
sons. It is noted that Js(⋅) and J(⋅)s are nonzero only when the crystals are growing or dissolving in
the pores.
Extending the staggered scheme proposed by Miehe et al. [34], we proceed the numerical solu-

tion from time tn to tn+1 through the following three sub-steps:

1. DetermineH in the phase-�eld system with the displacement variable u at tn.
2. With thisH, update the phase-�eld variable d at tn+1, by solving Eq. (127).
3. With the updated d, update all other variables u/p/c/s at time tn+1, by Newton’s method solv-
ing Eq. (128) at each iteration.

In the last step, we solve the coupled chemo-hydro-mechanics system in a monolithic manner
that updates the primary variables in Eq. (128) together in each iteration. However, other meth-
ods that sequentially solve the coupled system (e.g., [79]) can also be used for the same purpose.
Such sequentially-implicit methods may be preferred particularly when separate code is available
for each physics, e.g., one for the deformation and fracture problem and another for the �ow and
transport problem. Yet, the analysis of White et al. [80] suggests that, with respect to computation
cost per se, a sequential solution approach is suboptimal to a monolithic one employing a decent
block-partitioned preconditioner. �is motivates the following discussion on a block-partitioned
preconditioner for our problem at hand.

5.5. Block-partitioned preconditioner
We now seek to design a quality preconditioner for the Jacobian matrix in the coupled chemo-

hydro-mechanics system given by Eq. (128). To this end, we extend a block-partitioning strat-
egy originally developed for poromechanics [80–82] to our problem which involves more coupled
physics. For the purpose of preconditioning, we �rst consider a subset of the problemwhereby crys-
tal kinetics are insigni�cant (i.e., Js(⋅) → 0 and J(⋅)s → 0). In such cases, the Jacobian matrix reduces
to

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Juu Jup Juc
Jpu Jpp Jpc
Jcu Jcp Jcc

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (129)
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which is a 3 by 3 block-partitioned matrix. Our particular interest is in developing a block lower-
triangular preconditioner of the form

P−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X 0 0
L1 Y 0
L2 L3 Z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (130)

which, when multiplied to the Jacobian matrix J, results in a matrix very close to the block upper-
triangular matrix obtained from the LDU factorization of J. In other words, we want a block lower-
triangular matrix P−1 such that

P−1J ≈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I U1 U2
0 I U3
0 0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (131)

irrespective ofU1, U2, andU3. If this equation is satis�ed exactly, the preconditioned Jacobian has a
single eigenvalue of 1 and the Jacobian system can be solved by a couple of Krylov iterations. Such
an exact preconditioner, however, is generally very expensive to construct.

�erefore, to �nd an e�ective yet inexpensive preconditioner, we take the following three-step
approach:

1. Find the block preconditioner that exactly satis�es Eq. (131).
2. Approximate dense terms in the exact block preconditioner.
3. Replace inverse operations in the approximated block preconditioner with their own precon-
ditioners.

�is approach has been put forward byWhite and co-workers [80–82] for coupled poromechanics,
and it has proven very useful for arriving at a scalable preconditioner. In the following we apply this
approach to the coupled chemo-hydro-mechanics problem of our interest.
First, we solve for Eq. (131) to �nd a block lower-triangular matrix P−1 that exactly satis�es this

equation. We then obtain six equations for the six sub-matrices of P−1 as follows:

XJuu = I , (132)
L1Juu + Y Jpu = 0 , (133)
L1Jup + Y Jpp = I , (134)
L2Juu + L3Jpu + ZJcu = 0 , (135)
L2Jup + L3Jpp + ZJcp = 0 , (136)
L3Jpc + ZJcc = I , (137)

�e �rst equation obviously leads to X = J−1uu. From the second and third equations we get

L1 = −Y JpuJ−1uu , (138)
Y = (Jpp − JpuJ−1uuJup)−1 . (139)
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Here, Jpp − JpuJ−1uuJup is the Schur complement of the block Juu of the upper le� 2 by 2 block matrix,
which will be denoted by Su in the following. Solving the rest, we get

L2 = −Z[Jcu − (Jcp − JcuJ−1uuJup)S−1u Jpu]J−1uu , (140)
L3 = −Z(Jcp − JcuJ−1uuJup)S−1u , (141)
Z = [Jcc − JcuJ−1uuJuc − (Jcp − JcuJ−1uuJup)S−1u (Jpc − JpuJ−1uuJuc)]−1 . (142)

Similar to before, Z appears in L2 and L3.
Second, we approximate dense terms in the exact preconditioner derived above. Of particular

interest is in �nding good approximations of those containing J−1uu multiplied by coupling matrices,
e.g., SU = Jpp−JpuJ−1uuJup. �ese terms and their inverses appear all blocks of the exact P−1 except the X
block, but their exact values are overly expensive to be used for a preconditioning purpose. �us we
will approximate these terms, drawing on the “�xed-stress” split scheme for poromechanics which
has been widely used as a sequential solution method [83, 84] and recently rephrased as a block-
preconditioning approach [80]. �e split scheme goes as follows. If the mean volumetric stress is
assumed to be �xed during �uid �ow, the divergence of the solid velocity can be related to the change
of pore pressure only, i.e.,

σ̇vol = K∇ ⋅v − Bṗ = 0 → ∇⋅v = B
K
ṗ (143)

where K is the bulk modulus of the solid matrix. Substituting this expression into the mass balance
equations for the liquid and dissolved minerals, Eqs. (96) and (99), we get the �xed-stress approxi-
mations of these mass balance equations as

(1 − ϕs)(ρl Ṡ l + S l ρ̇l) + S lρl
B2
K
ṗ +∇ ⋅w l = ml , (144)

and

ρ l ċ + c(1 − ϕs)(ρl Ṡ l + S l ρ̇l) + c (S lρl
B2
K
ṗ) + ∇ ⋅ (cw l) + ∇ ⋅ j = ml . (145)

Observe that the displacement vector u is now eliminated from the original mass balance equations.
Discretization of these equations gives sparse approximations of the coupling terms containing J−1uu.
For example, the approximated Schur complement, denoted by S̃U , is given by

SU ≈ Jpp + S lρl
B2
K
V e ∶= S̃U , (146)

whereV e is the volume of elements assembled in an element-wisemanner (corresponds to themass
matrix of the pressure shape functions in �nite elements). Here, the original dense term JpuJ−1uuJup
is approximated by a sparse term (the second term). �is approximation reduces to that derived
by White et al. [80] in case the material is fully saturated (S l = 1) and ρl is constant. Similarly, we
approximate other terms as

Jcp − JcuJ−1uuJup ≈ Jcp + cS lρl
B2
K
V e ∶= J̃cp , (147)
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Jpc − JpuJ−1uuJuc ≈ Jpc + S l ∂ρl

∂c
B2
K

(p − pn)V e ∶= J̃pc , (148)

Jcc − JcuJ−1uuJuc ≈ Jcc + S l ∂ρl

∂c
B2
K

(p − pn)V e ∶= J̃cc , (149)

Accordingly, the Z block is also approximated as

Z ≈ (J̃cc − J̃cpS̃−1u J̃pc)−1 . (150)

�is termmay be further simpli�ed to J̃−1cc or (J̃cc− J̃cp diag(S̃−1u )J̃pc)−1. We use the former one in this
work.

�ird, we replace inverse operations in the approximated block preconditioner—which are usu-
ally expensive to compute—with their own preconditioners. Speci�cally,

J−1uu ≈ P−1Juu , S̃−1U ≈ P−1S̃u , J̃−1cc ≈ P−1J̃cc , (151)

where P−1(⋅) is a preconditioner for (⋅)−1. We use algebraic multigrid preconditioners in this work, but
a number of other combinations of sub-preconditioners can be e�cient as well. Discussions on the
choice of sub-preconditioners are presented in [80–82] in the context of poromechanics problems.
Following the three-step procedure described above, we �nally arrive at a speci�c expression for

Eq. (130) as

P−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P−1Juu 0 0
−P−1S̃u JpuP

−1
Juu P−1S̃u 0

−P−1J̃cc(Jcu − J̃cpP−1S̃u J̃pu)P
−1
Juu −P−1J̃cc J̃cpP

−1
S̃u

P−1J̃cc

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (152)

It would be illuminating to demonstrate how this block-preconditioner operates in real problems.
Indeed, what is needed by an iterative solution method is the matrix-vector product of the precon-
ditioner and an input vector x, say P−1x = y. �is operation can be written as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P−1Juu 0 0
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�e vector y can be e�ciently updated via the following three steps:

1. yu = P−1Juuxu
2. yp = P−1S̃u (xp − Jpuyu)

3. yc = P−1J̃cc(xc − Jcuyu − J̃cpyp)

Notice that, from the second step, we use the block(s) of y that we updated in previous step(s)—yu in
the second step, and yu and yp in the third step. In this sense, this block-preconditioning approach
can also be interpreted as a sequential solution method. SeeWhite et al. [80] for a thorough discus-
sion on this interpretation. �e repeated pattern in this sequence can be further applied to update
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the additional block related to the crystal kinetics, which we have observed satisfactory results in
the numerical examples that follow.

�e proposed block-preconditioner has shown decent performance (usually less than 20 Krylov
iterations for a tolerance of 10−6) for a number of chemo-hydro-mechanical problemswe have tested,
and it is believed to be a good choice for other problems sharing a similar mathematical structure.
However, much more extensive studies are needed to verify and improve the performance of the
current preconditioner—especially with respect to its scalability in large computing platforms, as
done by [80–82] for poromechanical problems. To better focus on the scope of the current work,
we leave this topic as a future research direction.

6. Numerical examples

In this section, two numerical examples are presented to validate and demonstrate the capabil-
ity of the developed computational model for simulating complex interactions among unsaturated
�ow, solid deformation, fracturing, and crystallization in pores. �e �rst example serves as a bench-
mark problem for verifying the numerical implementation and validating the mathematical model.
We simulate a validation problem in unsaturated poromechanics, because a benchmark setting for
chemo-hydro-mechanics involving in-pore crystallization is yet to emerge to the best of our knowl-
edge. Subsequently, in the second example we incorporate the �ow, transport, and crystallization of
minerals and the resulting fracturing process in the hostmaterial. Weparticularly consider the prob-
lem of capillary in�ltration of saturated solution into a porous medium, which has been commonly
used by a number of experimental and numerical studies on crystallization of salts in geomaterials
(e.g., [54, 85, 86]). �e main purpose of this example is to showcase the performance of the com-
putational model for simulating the development of fully cracked regions ensuing crystallization in
pores.

�e numerical examples have been prepared using Geocentric, a massively parallel �nite ele-
ment code for geomechanics that has been used in a number of previous studies (e.g., [27, 28, 30,
52, 63, 80, 81, 87]). �is code is built upon the deal.II �nite element library [88], p4est mesh
handling library [89], and the Trilinos project [90].

6.1. Drainage of freshwater in a porous column
Our �rst example has two purposes: (1) to verify the numerical implementation of combined �-

nite element and �nite volume discretization in the current code, and (2) to validate the mathemati-
calmodel’s capability for capturing coupled hydro-mechanical responses that can lead to crystalliza-
tion of materials. For the latter purpose, we particularly focus on a drainage (saturation decreasing)
process whereby supersaturation and crystallization can take place.
To achieve these two purposes simultaneously, we consider a benchmark problemof unsaturated

poromechanics that simulates Liakopoulos’ drainage experiment of a sand column [91]. �is prob-
lem has been used by a number of previous studies to validate their own combinations of governing
equations, e�ective stress, water retention, relative permeability, and others (e.g., [92–96]). Here we
use this problem in the same context. To verify the implementation, we simulate the drainage exper-
iment with the current code using the �nite element method for the solid deformation problem and
the �nite volume method for the �uid �ow problem, and compare the results with those obtained
by unsaturated poromechanics code usingmixed �nite elements for both the solid deformation and
�uid �ow problems (see [25, 30, 63, 81] for details of the mixed �nite element discretization). It is
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noted that, for problems like this one that do not involve a strong advection phenomenon, �nite
volume and �nite element results should converge to the same solution. �e numerical results are
also compared with the experimental data of Liakopoulos [91] to validate the mathematical model.
Figure 5 shows a schematic illustration of the problem setup. A 0.1 m wide and 1.0 m tall col-

umn is prepared such that it is initially under equilibrium with zero pore pressure. �e test begins
by making the top boundary undrained, which leads to drainage of the pore �uid through the bot-
tom boundary. During the test the bottom boundary is kept zero pressure and �xed, whereas no
�ux and no lateral displacement are allowed along the side boundaries. Both of the �uid �ow and
solid deformation in this problem are one-dimensional, and the column is discretized by 80 quadri-
lateral elements along the height. �e same mesh is used for both �nite element/�nite volume and
mixed �nite elements simulations. With a uniform time increment ∆t = 1 minute, we simulate the
experiment until the drainage time reaches 600 minutes.
Material parameters are assigned close to the properties of the Del Monte sand tested by Li-

akopoulos [91]. �e material is composed of sand grains and fresh pore water whose intrinsic den-
sities are ρs = 2700 kg/m3 and ρw = 1000 kg/m3, respectively, with porosity ϕ = 1 − ϕs = 0.2975.
As for hydraulic parameters, we use the absolute permeability k = 4.5 × 10−13 m2 (isotropic), the
dynamic viscosity µl = 10−6 kPa⋅s, and the van Genuchten model parameters S1 = 0, S2 = 1, αca = 15
kPa, and n = 5. Because no mechanical data is available for the tested sand, we assume Young’s
modulus E = 800 kPa and Poisson’s ratio ν = 0.25.

1.0 m

0.1 m

p� = �

p = �

q̂
=�

q̂ = �

q̂
=�

Figure 5: Schematic illustration of the column drainage example that simulates Liakopoulos’ experiment [91]. Initially,
the domain is fully saturated with zero pore pressure (p0 = 0). Once the simulation begins, the pore �uid is drained
through the bottom outlet �lter by gravitational force.

In Fig. 6 we present simulation results obtained by the �nite element/�nite volume and mixed
�nite element schemes, along with the experimental data of Liakopoulos [91], in terms of time evo-
lutions of pore pressure variation along the height and �uid velocity at the bottom outlet �lter. First,
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we �nd that the two numerical schemes yield virtually identical results, thus verify our implementa-
tion of combined �nite element/�nite volume discretization. Second, we see that the mathematical
model well reproduces the spatio-temporal evolution of pore pressure measured in the experiment.
In Fig. 6a the agreement between the simulation and experiments is rather qualitative in the begin-
ning, but it becomes increasingly quantitative as time proceeds. Figure 6b shows that the calculated
outlet velocities are in an excellent agreement with the measured data throughout the test. �ese re-
sults demonstrate that, even when the solid behavior is grossly simpli�ed, the computational model
can capture salient physics of coupled solid deformation and unsaturated �ow in real geomaterials.
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Figure 6: Drainage simulation results of the current code using �nite elements for the solid deformation problem and
�nite volume for the �uid �ow problem (FEM + FVM), and an unsaturated poromechanics code using �nite elements
for both the solid deformation and �uid �ow problems (FEM + FEM).�e numerical results are compared with experi-
mental data of Liakopoulos [91]. (a) Pore pressure variation along the height (numbers inside the �gure denote elapsed
time in minutes). (b) Fluid velocity at the bottom outlet �lter.

6.2. Capillary in�ltration of salt water and crystallization-induced cracking
We now proceed to the simulation of chemo-hydro-mechanical processes involving crystalliza-

tion in pores and resulting damage in the solid matrix. Speci�cally, we simulate a laboratory-scale
problem analogous to a typical experiment studying growth of salt crystals in geomaterials [85, 86],
in which a specimen is in�ltrated by salt water by capillarity and then damaged by crystallization of
salt minerals in pores.
Figure 7 illustrates the setup of this problem. We consider a porous rock column of width 0.025

m and height 0.1 m. �e column is initially �lled with freshwater and air, manifesting a uniform
capillary pressure of 20 kPa. To emulate capillary rise of a mineral solution, we prescribe the pres-
sure and concentration at the bottom boundary as 1 kPa and ceq (equilibrium solute mass fraction),
respectively. �e liquid solution is not allowed to �ow outside through the lower half of the lateral
boundaries as well as the top boundary, like in the experiment of Noiriel et al. [85]. In contrast, the
solution is subject to a constant outward �ux boundary condition of q̂ = −2 × 10−5 kg/m2/s in the
upper half of the lateral boundaries. �roughout the domain the dissolved minerals are subject to
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no �ux boundary conditions such that the minerals stay in the pores during an out�ow of the liquid
solution. �ese boundary conditions are intended to drive supersaturation of the solution—and
ultimately crystallization in pores—in the upper half of the specimen. Exploiting the symmetry of
the problem, we model the le� half of the domain and re�ect the result in the post-processing stage.
�e half domain is discretized by 32,768 quadrilateral elements of uniform size (mesh diameter
h = 0.025 cm), which leads to 198,339 degrees of freedom for the �ve primary variables.

0.1 m

0.025 m

p = �kPa
c = ceq

p� = −��kPa
c� = �

q̂ = �
q̂ = �× ��−� kg/m�/s

Figure 7: Schematic illustration of the capillary rise example. �e domain is initially �lled with freshwater and air such
that they manifest a capillary pressure of 20 kPa. �e simulation begins by prescribing the pressure and mass fraction
at the bottom boundary as 1 kPa and ceq, respectively. �e lower half of the boundaries are no �ux boundaries, whereas
the upper half domain is subject to a constant liquid �ux of −2 × 10−5 kg/m2/s. Mineral �ux ĵ is zero throughout the
boundaries.

�e material is assumed to be similar to the porous rock studied in Rasmussen et al. [97]. We
assign the material’s properties as follows: solid density ρs = 2550 kg/m3, initial porosity is ϕ0 =
1 − ϕs = 0.172, absolute permeability k = 4.3 × 10−16 m2, and van Genuchten parameters S1 = 0.4,
S2 = 1.0, αca = 50 kPa, and n = 1.65. �e linear elasticity parameters of the solid matrix are assumed
to be E = 10GPa and ν = 0.25. �e properties of the porewater remain unchanged from the previous
example. As for the mineral, we consider salt (sodium chloride), and adopt its parameters mainly
from Castellazzi et al. [54]. �ey are: the mineral density, ρm = 2160 kg/m3, the molar volume,
Vm = 27 cm3/mol, the equilibrium solute mass fraction, ceq = 0.264 kg/kg, the di�usion coe�cient
over tortuosity, Dm/τ = 0.5 × 10−9 m2/s, and the kinetic parameters, Kc = 4 × 10−4 kg/m3⋅s, gc = 1.0,
and Uthr = 1.6. �e temperature is set as T = 293.15 K (20○C). Lastly, using Eqs. (90) to (92) with
β = 0.1453 [73] and σt = 5 MPa, we get the phase-�eld model parameters as Gc = 49.5 J/m2 and
l = 2.1× 10−3m. It is noted that the ratio of the length parameter to the mesh diameter l/h is greater
than 8, which has been shown to give su�cient accuracy [35].
Once the simulation begins, the salt water in�ltrates the specimen from the bottom boundary.

Figure 8 shows the evolution of the supersaturation ratio U until 2760 minutes. At 30 minutes and
720 minutes the maximum supersaturation ratio equals unity, since no out�ow is allowed through
the lower half boundaries for both the solution and dissolvedminerals. However, when the solution
reaches the upper half boundaries, the water in the solution �ows outside through the boundaries,
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whereas the dissolved minerals remain inside the specimen. �is type of out�ow makes the super-
saturation ratio higher than unity. As a result, the contour at 2760 minutes show supersaturated
zones in which U > 1. We can also �nd that the supersaturation ratio exceeds Uthr = 1.6 in some
regions, which means that some minerals have been crystallized.

30.0 min 720.0 min 2760.0 min
0.0

2.0

1.0

U

Figure 8: Evolution of the supersaturation ratio U until 2760 minutes.

Figures 9 and 10 present the crystal saturation ratio, Sc, and the crystallization pressure, pcr,
at three time instances from 2760 minutes to 4092 minutes. Figure 9 shows that during this time
crystals grow continuously at the upper half of the lateral boundaries, which may be viewed as salt
e�orescence. We can also see from Fig. 10 that this crystal growth leads to an increase in crystal-
lization pressure. Recall that the crystallization pressure enters the mean pore pressure in e�ective
stress. As such, this increase in the crystallization pressure can give rise to tensile e�ective stress
that drives the evolution of the phase-�eld variable.
In Fig. 11 we plot the evolution of the phase-�eld variable d from 4092 minutes, with a uniform

time interval of 0.1 minute. Until 4092.1 minutes the phase-�eld value does not reach 1.0, so the
material may be regarded as partially damaged by microcracks. A�er 0.1 minute, the phase-�eld
value evolves to 1 at some locations, which means that the material is fully cracked therein. �e
cracked zones enlarge further in the next 0.1 minute. It is noted that the shape of the cracked regions
at 4092.3 minutes resembles characteristic cave-like damage zones in salt weathering. To the best of
our knowledge, this is the �rst numerical simulation of the evolution of damage and fully-cracked
zones by in-pore crystallization of minerals.

�e simulation is terminated at this point, because many assumptions in the constitutive mod-
els break down upon fracturing of the material. For example, the crystallization pressure equations
in the literature have been proposed for a crystal con�ned in small pore space such that a solution
�lm exists between the crystal and the solid matrix. �erefore, when cracks develop signi�cantly
as 4092.3 minutes in Fig. 11, these equations might become invalid or the crystallization pressure
might disappear. Also, we have assumed that the kinetic parameter Kc is constant, but it is expected
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Figure 9: Evolution of the crystal saturation Sc from 2760 minutes to 4092 minutes. Color bar in log scale.
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Figure 10: Evolution of the crystallization pressure pcr from 2760 minutes to 4092 minutes. Color bar in MPa.
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Figure 11: Evolution of the phase-�eld variable d from 4092.0 minutes to 4092.3 minutes.

to evolve by the fracturing process. Note, however, that all these limitations stem from the lack of
constitutive relations for crystals within fractures, not from the modeling framework. Once con-
stitutive models that address the aforementioned issue become available, they can be cast into the
current modeling framework.
Lastly, we would like to discuss computational aspects of the problem. As shown in Fig. 11, the

phase-�eld variable has evolved from partial damage to full cracks dramatically within the last 0.2
minute. To capture such an accelerated cracking process, we have used an adaptive time stepping
algorithm proposed by Borden et al. [40]. As a result, during the cracking process the time incre-
ments have been reduced to very small numbers (orders ofmagnitude smaller than aminute), giving
rise to undrained deformations in which the relative �ow of the pore �uid is negligible. �is aspect
further justi�es our choice of �nite volume discretization for the �ow problem, because mixed �-
nite elements for coupled poromechanics are subject to an inf–sup stability condition in undrained
conditions [87, 98–101]. We also would like to mention that solving a large number of steps in the
crack development stage has been made a�ordable thanks to the block-partitioned preconditioner
described in the previous section. �is preconditioner has allowed us to solve each linear system
via a couple of dozens Krylov iterations until large cracked zones emerge.

7. Closure

�is paper has presented a theoretical and computational framework for modeling cracking
and damage in porous materials by in-pore crystallization of minerals. �e framework combines a
chemo-hydro-mechanics approach with a phase-�eld description of fracture. Particular contribu-
tions of this work include: (1) derivation of a thermodynamically consistent e�ective stress tensor
in porous materials containing growing crystals, (2) identi�cation of state variables that must be
linked via constitutive laws, and (3) a block-preconditioned iterative solver that facilitates numeri-
cal solution of the fully coupled chemo-hydro-mechanics equations. �e computational model has
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been demonstrated to be capable of simulating the onset and evolution of cracking and damage
from in-pore crystallization of minerals.
In this work we have proposed a general modeling framework and then constructed its par-

ticular class by employing relatively simple constitutive models of crystallization kinetics and solid
deformation. We would like to note that use of more advanced constitutive models for these physics
may lead to other classes that have better predictive capabilities. Particularly, if quanti�able, pore-
scale characteristics need to be incorporated into the crystallization kinetics model. An important
example is the pore size distribution because crystallization in real geomaterials begins from smaller
pores. �e orientation of themineral crystal may also exert control on this problem [102]. As for the
solid model, incorporating pressure-dependent plasticity will allow us to accommodate the e�ect
of con�ning pressure on fracturing [52], which is important for deep subsurface problems. Beyond
constitutive models, the temperature �eld must be augmented to the formulation when heat �ow is
signi�cant. For problems involving complex drying phenomena, one needs to introduce additional
phases for vapors and models of moisture transport [103–105]. �e framework developed in this
work is amenable to incorporating these more complicated physics.
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