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Abstract Many geological materials, such as shale, mudstone, carbonate rock, limestone and rock salt are6

multi-porosity porous media in which pores of different scales may co-exist in the host matrix. When7

fractures propagate in these multi-porosity materials, these pores may enlarge and coalesce and therefore8

change the magnitude and the principal directions of the effective permeability tensors. The pore-fluid9

inside the cracks and the pores of host matrix may interact and exchange fluid mass, but the difference in10

hydraulic properties of these pores often means that a single homogenized effective permeability tensor11

field is insufficient to characterize the evolving hydraulic properties of these materials at smaller time scale.12

Furthermore, the complexity of the hydro-mechanical coupling process and the induced mechanical and13

hydraulic anisotropy originated from the micro-fracture and plasticity at grain scale also makes it difficult14

to propose, implement and validate separated macroscopic constitutive laws for numerical simulations.15

This article presents a hybrid data-driven method designed to capture the multiscale hydro-mechanical16

coupling effect of porous media with pores of various different sizes. At each scale, data-driven models17

generated from supervised machine learning are hybridized with classical constitutive laws in a directed18

graph that represents the numerical models. By using sub-scale simulations to generate database to train19

material models, an offline homogenization procedure is used to replace the up-scaling procedure to gener-20

ate cohesive laws for localized physical discontinuities at both grain and specimen scales. Through a proper21

homogenization procedure that preserves spatial length scales, the proposed method enables field-scale22

simulations to gather insights from meso-scale and grain-scale micro-structural attributes. This method is23

proven to be much more computationally efficient than the classical DEM-FEM or FEM2 approach while at24

the same time more robust and flexible than the classical surrogate modeling approach. Due to the usage of25

bridging-scale technique, the proposed model may provide multiple opportunities to incorporate different26

types of simulations and experimental data across different length scales for machine learning. Numerical27

issues will also be discussed.28

Keywords dual-porosity, data-driven modeling, directed graph, embedded discontinuity, recurrent29

neural network, multiscale method30

1 Introduction31

Many geological materials are porous media with a pore size distribution that spans several orders in32

magnitude. For instance, a crystalline rock may contain micro-pores filled with brine inclusion inside each33

crystal grain, while precipitation may exist in between grain boundaries. However, the initiation, propaga-34

tion and coalescence of flaws, defects and cracks may also produce larger pores that become flow conduits.35

Natural geological process or human activities such as CO2 storage or hydraulic fractures may also induce36
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changes in micro-structural attributes and pore size distribution [Bai et al., 1993, Zimmerman et al., 1993,37

Kuhlman et al., 2013]. Since the hydro-mechanical coupling effects may vary across multiple temporal and38

spatial scales due to the large spectrum of the pore size distribution, the interaction of the pore fluid in39

micro- and macro-pores and that of the solid skeleton may lead to highly complex path-dependent behav-40

iors. While it is possible to propose multiporosity and multipermeability models for deformable porous41

media, these models often require a large set of material parameters to calibrate the constitutive laws that42

characterize (1) the hydro-mechanical responses of the solid skeleton, (2) the permeability relations of the43

macro- and micro-pores, and (3) the fluid mass exchanges across the dual pore spaces [Lewis and Ghafouri,44

1997, Callari and Federico, 2000, Choo et al., 2016].45

This large amount of material parameters makes material parameter identification difficult and im-46

poses high demand on experimental data that are not always available in practice [Liu et al., 2016]. Mean-47

while, the apparent good fits between experiments and simulations may easily be attributed to the wrong48

reasons – excess curve-fitting and high dimensionality of the material parameter set [Wang et al., 2016].49

This so-called curse of high dimensionality (cf. Friedman [1997]) is further complicated by the new set of50

information afforded by recent X-ray tomographic imaging and digital image correlation techniques. While51

these techniques are important for understanding new insight of porous media at the microscopic origins,52

creating a consistent phenomenological interpretation for the relations between macroscopic stress-strain53

curve and micro-scale grain-scale data with phenomenological model is also understandably more chal-54

lenging. For instance, the experimental data can be used in the numerical modeling process in a number55

of different ways. The most trivial case is perhaps the parameter identification procedure, which can be56

regarded as an optimization or constrained optimization problem where an objective function is defined57

as a metric that measures the discrepancy between the benchmark (often the experimental data) and the58

simulation results. The optimized material parameters are determined via a misfit function of optimiza-59

tion problem subjected to a number of equality or inequality constraints (e.g. the valid range of Poisson60

ratio) [Schmidt et al., 2015, Liu et al., 2016]. The calibration process, therefore, produces the optimal set of61

material parameters that minimizes the errors measured by the objective function [Wang et al., 2016].62

One possible extension of this approach is to use data-driven method to replace the constitutive law63

itself. The idea of using data-driven model obtained from supervised learning to replace constitutive laws64

for single-physics solid mechanics problem can at least be traced back to the 90s. For instance, Ghaboussi65

et al. [1991] discovered that artificial feed-forward neural network can be trained to replace constitutive66

laws. By utilizing the self-organization capabilities to adjust weight or strength of connections among neu-67

rons or processing units, machine can ”learn” to reduce the error of the prediction made by the network68

of processing units via a procedure called back propagation. As a result, the neural network that com-69

pletes the training against the training data set can be used to replace the constitutive laws for materials,70

including those exhibiting rate- and history-dependent behaviors [Graf et al., 2010, Furukawa and Yagawa,71

1998]. Another different approach has recently been proposed in Kirchdoerfer and Ortiz [2016] where the72

supervised learning process typically required for the artificial neural network and the neural network73

itself is completely by-passed. Instead, the authors propose a new constrained optimization problem that74

minimizes the discrepancy between measured and predicted responses, while the knowledge that is of75

great certainty or of high degree of belief, such as the compatibility equation and balance principles are76

used as the constraints. Consequently, by finding the saddle point of the constrained optimization prob-77

lem, local data sets that are closest to the satisfaction of compatibility and equilibrium can be located to78

generate incremental updates of elasticity problems. However, this method has not yet been expanded for79

history-dependent (e.g. plasticity, damage) behaviors and the proper way to incorporate it without internal80

variables is not clear at this point. In all the cases mentioned above, the data-driven technology is typically81

applied for one single purpose – replacing conventional constitutive laws with data-driven models either82

through supervised machine learning (cf. Ghaboussi et al. [1991], Lefik et al. [2009], ?) or recently varia-83

tional principles (cf. Kirchdoerfer and Ortiz [2016]). In both cases, the hierarchy of the single-physics solid84

mechanics problems is simply a sequence illustrated in Figure 1.85

In the single-physics solid mechanics problem, the relationship between strain and displacement, and86

between the balance of linear momentum and stress is considered ”definition”, while the relationship87

between the stress and strain is clearly the only phenomenological component and therefore it is justified88

to be replaced by data-driven constitutive law [Ghaboussi et al., 1991, Lefik et al., 2009, Kirchdoerfer and89

Ortiz, 2016].90
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Balance of Linear Momemtum Stress Strain Displacement

Fig. 1: Hierarchy of single-physics solid mechanics problem. Black arrow represents a definition or a ”uni-
versal principle”; red arrow represents either a phenomenological relation or an operator that is defined
not based on first principles.

This black-and-white classification between phenomenological law and universal principles is, never-91

theless, not effective for multi-physical problems where physical quantities are linked by much compli-92

cated hierarchical relations, such as the example poromechanics problem shown in Figure 2.

Fig. 2: Hierarchy of a multi-physics poromechanics problem for fluid-infiltrating dual-porosity media.
Black arrow represents a definition or a ”universal principle”; red arrow represents either a phenomeno-
logical relation or an operator that is defined not based on first principles.

93

This complexity leads to issues that are often neglected but could have important implication on the94

quality of simulations. One key issue is the consistency. In particular, computational models for multiscale95

poromechanics problem often rely on multiple constitutive laws to replicate the corresponding hydraulic96

and mechanical processes. For example, in a reservoir simulator, one may employ a cap-plasticity model97

such as those in Foster et al. [2005] and Sun et al. [2013a], to model the path-dependent behavior of porous98

rock, while use a retention model to predict the relations between degree of saturation and suction, and99

another hydraulic model to relate suction with the relative permeability [Choo et al., 2016]. However, as100

pointed out previously in a number of works, such as Zhu and Wong [1997] and Nuth and Laloui [2008],101

deformation of the solid skeleton may inevitably change the microstructural attributes, such as pore size102

distribution and tortuosity of the pore space and these changes may in return affect the pore pressure103

and hence the effective stress history. As a result, the assumption that the permeability, solid constitutive104

law and poroelasticity material parameters such as Biot’s modulus and Biot’s coefficient can be calibrated105

separately in a de-coupled manner may lack physical underpinning, especially when the microstructure106

of the solid skeleton is expected to undergo significant changes such as cracks, strain localization, and107

phase transition, that affect both the coupling mechanism and induce anisotropy in both the mechanical108

and hydraulic responses [Sun et al., 2011b, Guo and Zhao, 2013, Kuhn et al., 2015, Sun et al., 2016, Wang109

et al., 2016, Na and Sun, 2017].110

One possible way to improve the consistency of the computational model is to directly incorporate the111

micro-mechanical data and direct numerical simulations on the microstructure to improve the consistency112
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of the hydro-mechanical coupling model. For instance, one may replace constitutive law with a calibrated113

micro-mechanical simulations for field scale problems as demonstrated in Miehe [2003], Nitka et al. [2011],114

Sun et al. [2013b], Guo et al. [2016] or they can be concurrently coupled with the macroscopic model via a115

handshake transition domain [Wellmann and Wriggers, 2012, Sun and Mota, 2014, Sun et al., 2016]. In both116

cases, the major technical challenge is the prohibitively high computational cost to run micro-mechanical117

simulations for field scale problems and the difficulty to store, post-process and analyze the large amount118

of data generated from numerical simulations.119

The objective of this paper is to present a modeling framework in which a data-driven model is used120

as a mean to link information across multiple scales via offline training. This approach has two distinct121

advantages. First, unlike the classical hierarchical coupling methods such as Feyel and Chaboche [2000],122

Miehe and Bayreuther [2007], Geers et al. [2010] where incremental constitutive updates of each integration123

points in the macroscopic model are driven by imposing increment changes on the boundary conditions124

of the RVE simulations, the data-driven approach only requires the generation of database, which can125

take place offline and not during the numerical simulations. In other words, once the machine learning126

processes are completed, the users of the multiscale model may run multiscale simulations without run-127

ning the RVE simulations again. As a result, the computational cost of the data-driven multiscale model128

can be so significantly reduced that it becomes possible to link simulations of more than two scales to-129

gether for field applications. Second, unlike the other offline approach in which the accuracy, robustness130

and sophistication of the multiscale simulations are all limited by the quality of the macroscopic surro-131

gate models such as the phenomenological models for interface element (e.g. Zhou et al. [2009]) or bulk132

element (e.g. Liu et al. [2016]), the data-driven neural network models can be adaptive and the level of133

complexity of the data-driven model can be easily changed by adding more nodes and layers into the neu-134

ral networks. Thirdly, since both the mechanical and hydraulic properties are both updated directly from135

the same micro-mechanical simulations, the consistency, and compatibility of the data-driven mechani-136

cal and hydraulic material laws are guaranteed. Finally, the data-driven approach also allows data from137

experiments and micro-mechanical simulations both be directly incorporated into the machine learning138

procedure to generate and verify the data-driven models.139

The organization of the paper is as follows. First, we will review the field theory and the mathemati-140

cal formulation of the dual-porosity dual-permeability poromechanics problem in the infinitesimal regime.141

Then we will describe the various supervised machine learning techniques we used to replace phenomeno-142

logical constitutive laws with data-driven models that are trained by a combination of experimental data143

and RVE simulations. Following this step, we will introduce further details on the training procedures and144

the selection of the right machine learning method. In particular, we will provide detailed account on the145

usage of both the classical artificial neural network and recently developed recurrent neural network ar-146

chitectures to generate data-driven models as surrogates for linking multiple scales. The potential of deep147

learning for computational poromechanics modeling will also be discussed. As for notations and symbols,148

bold-faced letters denote tensors; the symbol ’·’ denotes a single contraction of adjacent indices of two ten-149

sors (e.g. a · b = aibi or c · d = cijdjk ); the symbol ‘:’ denotes a double contraction of adjacent indices of150

tensor of rank two or higher ( e.g. C : εe = Cijklε
e
kl ); the symbol ‘⊗’ denotes a juxtaposition of two vectors151

(e.g. a⊗ b = aibj) or two symmetric second order tensors (e.g. (α⊗ β) = αijβkl). As for sign conventions,152

unless specified otherwise, we consider the direction of the tensile stress and dilative pressure as positive.153

2 Problem Statements154

To test the applicability of the graph-based machine learning model, we select the simulations of hydro-155

mechanical coupling effect of deformable multi-permeability porous media, a sufficiently complex multi-156

physical problem that has great demand and common in engineering applications, as the test bed. Multi-157

porosity/multi-permeability porous media are materials consisting of more than one co-existing pore sys-158

tems. These pore systems can be isolated pores or interconnected, as shown in Figure 3 [Elsworth and Bai,159

1992, Zimmerman et al., 1993, Ji et al., 2015, Kuhlman et al., 2015, Choo et al., 2016]. In a multi-permeability160

model, one does not seek to obtain a single effective permeability for the entire pore space. Instead, the161

entire pore space is partitioned into two or more sub-systems based on the distinctive pore space sizes (e.g.162

limestone, carbonate rock) or geometrical features (e.g. permeable host matrix with cracks and joints).163
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These co-existing pore systems may exchange fluid mass, depending on the pore connectivity. Multi-164

porosity/multi-permeability models are important for characterizing reservoirs, containment transport,165

re-activation of faults and geological disposal of CO2 and nuclear waste.166

Fig. 3: Backscattered SEM images of an intact sample of Majella limestone where pores of multiple sizes
are clearly observed. Figure adapted from Ji et al. [2015].

While multi-porosity and multi-permeability models are powerful approaches to incorporate micro-167

structural information for macroscopic modeling, the identification of material parameter and validation of168

the model is more difficult [Köhne et al., 2006, Auriault et al., 2010, Lewandowska and Auriault, 2013]. This169

issue becomes even more profound when the deformation of the solid skeleton becomes non-negligible170

due to plastic deformation, crack growths or other changes of microstructures that might lead to complex171

anisotropic evolutions of the effective permeability in multiple porous systems inside the porous media.172

While multiscale modeling has found to be able to provide insight on the evolving microstructural at-173

tributes for single-porosity system as shown in Sun et al. [2011b,a], Liu et al. [2015], Wang and Sun [2015,174

2016b,a], the hierarchical multi-scale computation is often too expensive to link simulations across more175

than one scales and hence not suitable for more complex problems in which information across multiple176

scales is important for the macroscopic outcome. In this work, the aforementioned issues are resolved by177

introducing deep learning as an offline scale-bridging tool for multi-porosity system. For completeness,178

we will provide a brief overview of the mathematical framework of the multiscale modeling framework,179

which is extended from the single-porosity counterpart documented in Wang and Sun [2016b].180

2.1 Balance Principle181

For completeness, we briefly outline the initial boundary value problem that simulates the deformation-182

diffusion coupling mechanism in deformable multi-porosity media. Here we consider a saturated porous183

media occupying a spatial domain B ⊂ Rnsd where nsd =1, 2, or 3 stands for the number of spatial di-184

mensions. The boundary of the body is denoted as ∂B ⊂ Rnsd−1. The porous solid is treated as a double-185

porosity mixture and the two dominant pore scales are the macropores M (the pores in fissures, dila-186
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tant shear bands, cracks, ...) and the micropores m (the solid matrix pores). The elementary volumes of187

the total mixture, solid, macropores, micropores and void are therefore denoted as dV, dVs, dVM, dVm,188

dVv = dV − dVs = dVM + dVm, respectively. The pore fractions for macropores (ψM) and micropores (ψm)189

are defined as,190

ψM = ψ =
dVM
dVv

, ψm = 1− ψ =
dVm

dVv
. (1)

Meanwhile, the volume fractions for solid, macropores and micropores can be expressed as a function of191

porosity φ = dVv
dV and pore fractions, i.e.,192

φs =
dVs

dV
= 1− φ, φM =

dVM
dV

= φψ, φm =
dVm

dV
= φ(1− ψ). (2)

The partial densities of each constituent can be determined using the volume fractions and the intrinsic193

mass densities of solid ρs and fluid ρ f :194

ρs = (1− φ)ρs, ρM = φψρ f , ρm = φ(1− ψ)ρ f . (3)

Then the total mass density of the mixture is given by195

ρ = ρs + ρM + ρm. (4)

Assume that the solid skeleton deformation is infinitesimal, hence the difference between the reference196

and spatial configuration is neglected and det F = J ≈ 1. In this case, we may denote the material time197

derivative following the solid velocity v = ∂u
∂t as ˙(•) = ∂(•)

∂t +∇(•) · v. Assuming incompressible solid198

and fluid constituents, negligible inertial terms and no mass exchange between solid and fluid, following199

the formulation of Choo and Borja [2015], the strong form of the problem reads: find the displacement u :200

B → Rnsd , the Cauchy macropore pressure pM : B → R and the Cauchy micropore pressure pm : B → R201

such that the balance of linear momentum, the balance of fluid mass in macropores, the balance of fluid202

mass in micropores and the boundary conditions are satisfied:203 

∇ · σ + ρg = c0(ṽm − ṽM) on B,
ρ f ψ∇ · v +∇ · qM = −c0 on B,

ρ f (1− ψ)∇ · v +∇ · qm = c0 on B,

u = u on ∂Bu

σ · n = t on ∂Bt ,
pM = pM on ∂BpM ,

qM · n = −qM on ∂BqM ,
pm = pm on ∂Bpm ,

qm · n = −qm on ∂Bqm .

(5)

σ denotes the total Cauchy stress tensor and the effective Cauchy stress tensor is given by,204

σ′ = σ + p1 = σ + [ψpM + (1− ψ)pm]1. (6)

c0 is the fluid mass transfer coefficient between the macropores and micropores. ṽM = vM − v, ṽm =205

vm − v are the relative fluid velocities in macropores and micropores, respectively. A semi-empirical con-206

stitutive equation is adopted for c0:207

c0 =
α

µ f
(pM − pm), (7)

where α is a parameter characterizing the interface permeability between the macropores and micropores.208

µ f is the dynamic viscosity of the fluid.209
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The relative fluid mass fluxes qM, qm are related to Cauchy pore pressures via Darcy’s law:210

qM = ρ f φψ ṽM = −ρ f
kM
µ f
· (∇pM − ρ f g),

qm = ρ f φ(1− ψ) ṽm = −ρ f
km

µ f
· (∇pm − ρ f g).

(8)

where kM and km are intrinsic permeability tensors at macro-scale pore and micro-scale pore. g is the211

gravity acceleration vector.212

The boundary ∂B having unit normal n at x ∈ ∂B admits the decomposition213 {
∂B = ∂Bu ∪ ∂Bt = ∂BpM ∪ ∂BqM = ∂Bpm ∪ ∂Bqm

∅ = ∂Bu ∩ ∂Bt = ∂BpM ∩ ∂Bqm = ∂BpM ∩ ∂Bqm ,
(9)

where ∂Bu, ∂BpM and ∂Bpm are Dirichlet boundaries with solid displacement u, macropore pressure pM214

and micropore pressure pm prescribed. ∂Bt, ∂BqM and ∂Bqm are Neumann boundaries with tractions t,215

macropore flux qM and micropore flux qm prescribed.216

Meanwhile, the initial conditions are imposed as217

u(x, t = to) = u0(x), pM(x, t = to) = pM0(x), pm(x, t = to) = pm0(x) for all x ∈ B at t = t0 (10)

2.2 Embedded strong discontinuities for displacement and pore-fluid flux jump218

In this work, the supervised machine learning procedure is used to generate constitutive laws for the219

strong discontinuities. As a result, we briefly review the kinematics and constitutive responses of dual-220

permeability porous media with strong discontinuity.221

Consider a given material point X ∈ B and an associated local neighborhood BX ⊂ B crossed by a222

strong discontinuity (fracture, shear band, fault, etc.). Denote the surface of the discontinuity as Γ and the223

local domain BX is thus divided by Γ into subdomain pairs BX = B+X
⋃B−X . The motion of the particles224

within BX is described by local displacement field uµ = xµ − X = ϕµ(X) − X. Assume the following225

relation to the large-scale (or conformal) displacement field u,226

uµ = u + JuK(HΓ − fΓ), (11)

where JuK is the displacement jump across the interface Γ, HΓ is the Heaviside step function across Γ and227

fΓ is a smooth ramp function in BX specified in [Borja, 2000]. It is also useful to define the continuous part228

ū of motion uµ as229

u = u− JuK fΓ. (12)

The large-scale (or conformal) and continuous infinitesimal strains can be defined as,230

ε = ∇su =
1
2
(∇u + (∇u)T), ε = ∇su. (13)

The local infinitesimal strain is given by, assuming relative uniformity of JuK along Γ such that∇X JuK→231

0 in BX ,232

εµ = ∇suµ

= ε + (JuK⊗n)sδΓ

= ε− (JuK⊗∇ fΓ)
s + (JuK⊗n)sδΓ,

(14)

where the equation∇HΓ = δΓn is employed. δΓ is the Dirac delta function across Γ and n is the unit normal233

of Γ pointing from B−X to B+X .234

The porous media in the vicinity of strong discontinuity Γ is composed of macro-scale voids gener-235

ated by cracking, shear band formation and micro-scale voids inside the underlying solid matrix. In other236

words, we assume that the strong discontinuities are only captured by the macropores and the micropores237
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remain continuous. The motion of the fluid flow in the local neighborhood BX in both scales are character-238

ized by macropore fluid flow qMµ
and micropore fluid flow qmµ

[Callari and Armero, 2002]:239

qMµ
= qM + JqMK(HΓ − fΓ),

qmµ
= qm + 0(HΓ − fΓ).

(15)

where qM and qm are regular flow in the macropores and micropores, respectively. We assume that the240

macro fluid flow field exhibit a jump JqMK across Γ, while the micro fluid flow does not. For convenience,241

the ramp function fΓ used to embed the strong discontinuity of the displacement field is also used to242

reproduce the jump of the fluid flux. Assuming that the pore fluid is incompressible, the local balance243

equations of the macro-fluid content MMµ and local micro-fluid content Mmµ (fluid mass increment per244

unit reference volume of porous solid) read,245

ṀMµ = −∇ · qMµ
= −∇ · qM + JqMK · ∇ fΓ − (JqMK · n)δΓ

Ṁmµ = −∇ · qmµ
= −∇ · qm.

(16)

with the assumption that ∇ · JqMK→ 0 in BX .246

The solution of the local displacement jump field JuK requires a local equilibrium equation relating the247

total stress field in BX \ Γ and the total traction across Γ driving the mechanical inelastic effects inside the248

strong discontinuity. The weak form writes, for all variations δ JuK, [Callari and Armero, 2002]249

− 1
VBX

∫
BX

δ JuK ·σn dV +
1

LΓ

∫
Γ

δ JuK ·TΓ dΓ = 0 (17)

where VBX = measure(BX) and LΓ = measure(Γ). Under the assumption that the macropore fluid flux250

is discontinuous, then the pressure is continuous while the pressure gradient is discontinuous across the251

strong discontinuity. The local equilibrium equation can be written in terms of effective stress and effective252

traction, i.e.,253

− 1
VBX

∫
BX

δ JuK ·σ′n dV +
1

LΓ

∫
Γ

δ JuK ·T ′Γ dΓ = 0 (18)

In the limit
VBX
LΓi
→ 0:254

T ′Γ(JuK) = (σ′(ε) · n)|Γ. (19)

The constitutive relation for the effective traction across the discontinuity comes from the data-driven255

model trained with data from sub-scale simulations, as shown in Section 5. Meanwhile, the rate form of256

the constitutive relation for the stress in the continuum writes:257

σ′(ε) = Ce : ε = Ce : ε− Ce : (JuK⊗∇ fΓ)
s, (20)

where Ce is the rank-four elastic moduli tensor.258

According to Borja [2000], static condensation can be performed on Eq. 19 and the balance of linear259

momentum in Eq. 5 for constant triangle elements used in this work. Thus, within each iteration step for260

the solution of the global equations Eq. 5, Eq. 19 can be solved locally to get JuK at each Gauss point,261

assuming constant ε. Moreover, following the derivations in Callari and Armero [2002], which has the262

same assumption of fluid flux discontinuity as in this work, the balance of fluid mass in macropores and263

micropores in Eq. 5 remain unmodified.264

Here, we define the displacement, macropore pressure and micropore pressure trial spaces as265

Vu = {u : B → Rnsd | u ∈ H1, u|∂Bu = u}
VpM = {pM : B → R| pM ∈ H1, pM|∂BpM

= pM}

Vpm = {pm : B → R| pm ∈ H1, pm|∂Bpm
= pm}

(21)
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and the corresponding admissible spaces of variations as266

Vη = {η : B → Rnsd | η ∈ H1, η|∂Bu = 0}
VζM = {ζM : B → R| ζM ∈ H1, ζM|∂BpM

= 0}

Vζm = {ζm : B → R| ζm ∈ H1, ζm|∂Bpm
= 0}

(22)

where H1 denotes the Sobolev space of functions of degree one. Using the backward Euler implicit scheme267

of step size ∆t = tn+1 − tn, the time-integrated variational form of the large-scale problem is constructed268

as: find u ∈ Vu, pM ∈ VpM and pm ∈ Vpm such that for all η ∈ Vη , ζM ∈ VζM and ζm ∈ Vζm269

G :Vu ×VpM ×Vpm ×Vη → R

G(u, pM, pm, η) =
∫
B
∇sη : σ′ dV︸ ︷︷ ︸

g1

−
∫
B
∇ · η p dV︸ ︷︷ ︸

g2

−
∫
B

η · ρg dV︸ ︷︷ ︸
g3

+
∫
B

η · c0(ṽm − ṽM) dV︸ ︷︷ ︸
g4

−
∫

∂Bt
η · t̄ dA︸ ︷︷ ︸
gext

= 0

(23)

H∆t
pM

:Vu ×VpM ×Vpm ×VζM → R

H∆t
pM

(u, pM, pm, ζM) =
∫
B

ζM ρ f ψ∇ · (u− un) dV︸ ︷︷ ︸
hM

1

+∆t ρ f

∫
B
∇ζM ·

kM
µ f
· (∇pM − ρ f g) dV︸ ︷︷ ︸

hM
2

+∆t
∫
B

ζM c0 dV︸ ︷︷ ︸
hM

3

−∆t
∫

∂BqM

ζM qM dA︸ ︷︷ ︸
hM

ext

= 0

(24)

H∆t
pm :Vu ×VpM ×Vpm ×Vζm → R

H∆t
pm (u, pM, pm, ζm) =

∫
B

ζm ρ f (1− ψ)∇ · (u− un) dV︸ ︷︷ ︸
hm

1

+∆t ρ f

∫
B
∇ζm ·

km

µ f
· (∇pm − ρ f g) dV︸ ︷︷ ︸

hm
2

−∆t
∫
B

ζm c0 dV︸ ︷︷ ︸
hm

3

−∆t
∫

∂Bqm

ζm qm dA︸ ︷︷ ︸
hmext

= 0

(25)

To the best knowledge of the authors, this work is the first recorded implementation of assumed strain270

hydro-mechanical model for dual-permeability dual-porosity system with embedded strong discontinu-271

ities in both the displacement and flux fields. Nevertheless, due to the main focus of this work is on the272

incorporation of the machine learning method for scale bridging, we decided to omit the details of the im-273

plementation of the assumed strain dual-permeability model. Interested readers may refer to a number of274

related works on assumed strain formulation such as Callari and Armero [2002], Borja [2000], Mosler and275

Meschke [2003], Callari et al. [2010] for details. Furthermore, as we employ equal-order discretization for276

the solid displacement and the pore pressure in the macro- and micro-pores, the lack of two-fold inf-sup277

condition must be circumvented. For brevity, the discussion of the stabilization procedure is not included278
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but can be found in earlier works such as White and Borja [2008], Sun et al. [2013c], Sun [2015], Choo and279

Borja [2015], Krischok and Linder [2016].280

3 Architecture of directed graph for data-driven poromechanics problems281

In the classical hierarchical multiscale framework, such as FEM2 (cf. Frankenreiter et al. [2011], Fish [2013])282

and DEM-FEM (Liu et al. [2015], Wang and Sun [2016b,a]), the multiscale simulations are conducted by283

replacing constitutive law with representative elementary volume (REV) simulations that provide the in-284

cremental constitutive updates at each integration point. This method is typically much more cost efficient285

than the direct numerical simulation, as the micro-mechanical simulations are confined in the REV domain286

rather than conducted in the entire physical domain. However, the computational cost is typically much287

higher than the conventional constitutive law driven method [Liu et al., 2015, Guo et al., 2016].288

This computational cost is perhaps feasible for two-scale coupling simulations, but it may become a289

severe computational barrier if one attempts to link simulations across more than one scale. The remedy290

to this issue can be classified as two approaches – the usage of surrogate model [Keshavarz and Ghosh,291

2013, Liu et al., 2016] or the usage of reduced-order modeling [Fish and Wu, 2011]. In the former case292

where surrogate model is used, the smaller scale simulations will often be used to generate a database293

aimed to record the homogenized responses of the representative elementary volume. This database can294

also be experimental data or a combination of both ”real” experimental data and the ”virtual” simulation295

data. This database is then split into two mutually exclusive subsets – One used to calibrate and identify296

material parameters via inverse problems; another one used for validation and performance assessment297

of the numerical models [Liu et al., 2016]. Nevertheless, the primary drawback of the surrogate-based298

approach, in particular in the cases where phenomenological models are used as surrogate model, is that299

the accuracy and efficiency are highly dependent on the quality of the surrogate models that replace the300

direct numerical simulations (DNS). Furthermore, this approach often requires multiple surrogate models301

for multiphysics problem that might not be consistent with each other. This issue is particularly common302

for poromechanics problems (e.g. Shahir et al. [2012]) where the usage of kinematic hardening plasticity303

model coupling with isotropic permeability model often leads to the discrepancy that is hard to detect.304

Even worse, the introduction of multiple material parameters may make it easier to complete curve-fitting305

for a model that lacks prediction capacity otherwise.306

Here we limit our focus on a hierarchical multiscale coupling approach in which recurrent neural net-307

work trained by a supervised deep learning is used as surrogate model to deliver constitutive responses,308

from solution database [Tawhai et al., 2009, Jain and Ghosh, 2009]. Our major point of departure is the use309

of a graph-based concept previously presented in Pawlowski et al. [2012], Sun [2015] and Salinger et al.310

[2016] to design the information flow from smaller to larger scales and the use of recurrent neural network311

to automatically generate one surrogate model that provide the updates for both the effective stress and312

permeability tensors in the macroscopic and microscopic pore space.313

This directed graph represents the hierarchy of information processed in a computational model that314

utilizes a combination of classical and data-driven models. In the directed graph representation, physical315

quantities are viewed as vertices, while the relations among physical quantities are considered as edges316

that link those building blocks together to form a computational model. In the case where the directed317

graph represents the hierarchy of information of the initial boundary value problem, the most upstream318

vertices (also called the root in graph theory literature) would be the governing equations (e.g. balance319

principles, phase field evolution equations, etc), while the downstream vertices (also called the leaves in320

graph theory literature) are the unknown variables (e.g. displacement, pore pressure, temperature). Close321

examination of the information flow may help us distinguish the edges into 1. definitions (e.g. relation be-322

tween deformation gradient and displacement field, relation between Biot’s coefficient and bulk moduli)323

2. universal principles (e.g. effective stress principle – relationship among total stress, effective stress and324

the pore pressure of the macro- and micro-pores, balance principles) and 3. material laws, phenomenolog-325

ical relations or empirical rules (e.g. Darcy’s law, water retention curve, stress-strain relation), as shown in326

Figure 4.327

Unlike the model-free approach in which the entire computational model is replaced by neural net-328

work (cf. the model-free approach e.g. Graf et al. [2010]), our approach is to keep the edges identified329
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Fig. 4: Directed graph representing the information flow of the the multi-scale multi-physics dual-
permeability poromechanics problem for fluid-infiltrating media. Red arrow represents either a phe-
nomenological relation or an operator that is defined not by definition, universal law or first principle.

either as definitions or universal principles, but replace the edges that are commonly linked together by330

phenomenological models with data-driven model trained from deep learning. To do so, we first identify331

the subgraph (the graph formed by a subset of the vertices and edges of the graph that presents the com-332

puter model) in which the vertices are only connected by material laws. In this subgraph, we again identify333

the leaves and roots. For instance, in the elasticity problem example illustrated in 1, there will be only one334

leave (strain) and one root (stress).335

σ′
macro

ϵmacroϕM

ϕm

Kskeleton

k
M

macro

k
m

macro

cmacro

Fig. 5: Sub-graph of the multi-scale multi-physics poromechanics problem for fluid-infiltrating media. Red
arrow represents either a phenomenological relation or an operator that is defined not based on first prin-
ciples.

This information in return gives us an idea about what we should ”learn” and what should be in336

the input and output in the supervised machine learning setting. In the dual-permeability poromechanics337
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problem, which we selected as test bed, we assume that the effective stress principle is valid for the dual-338

permeability system [Biot, 1941, Terzaghi, 1943, Callari and Federico, 2000, Coussy, 2004]. Furthermore,339

since we use a recurrent neural network for the supervised training, the time history of strain is not ex-340

plicitly expressed as an additional vertex in the directed graph, as previously done in Lefik and Schrefler341

[2003] where feed-forward neural network is used. Rather, they are taken into account as internal state by342

default such that the path-dependent behavior of the dual-permeability porous material can be replicated.343

In the dual-permeability problem, we identify that macroscopic strain, εmarco is the root and the effective344

stress σ′marco, permeability of the macroscopic and microscope pores, kM
macro, km

macro, the mass exchange345

rate cmacro, and the bulk modulus of solid skeleton Kskeleton, as shown in Figure 5. Once the input and346

output are determined, the rest of the task is to determine the appropriate model that gives us the output347

prediction when a specific input is given. Notice that it is also possible that the ”material laws” of a multi-348

physical problem may also lead to multiple sub-graphs that share no vertex. In such sense, the procedure349

described above still applies, but the machine learning for each sub-graph will be independent to each350

other.351

Another important observation is that it is not necessary to completely replace the subgraph with data-352

driven model. For instance, one may use the conventional material law to connect the strain and strain353

history with stress but use experimental data to generate a data-driven model that predicts the perme-354

ability from strain history. The optimization of the choice of the edges for the hybrid approach, especially355

when it is subjected to noisy data is an important topic but is out of the scope of this study.356

3.1 Preparation of databases for offline hierarchical supervised machine learning357

In the previous section, we discuss the anatomy of the mathematical model represented in a directed graph,358

and the method to identify the components to insert data-driven model properly in a multi-physical prob-359

lem without altering the hierarchy and connectivity of the physical quantities. In this section, our goal is360

to focus on how to use sub-scale data to enhance the predictions via an offline hierarchical bridging scale361

method. In particular, we will review the difference of online and offline hierarchical multiscale approaches362

and procedure of generating pre-computation databases for fast or real-time multiscale simulations.363

Fig. 6: Comparison between off-line pre-trained multiscale ANN-FEM simulations and online hierarchical
multiscale simulations.

In an online hierarchical coupling approach in which simulations of different scales are linked, we364

might define macroscopic problems and microscopic problems and consider different technique to link the365

two problems in a hierarchical manner. For instance, the mechanical and hydro-mechanical responses of366
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granular materials can be replicated by a DEM-FEM coupled model in which the macroscopic material367

laws are homogenized from discrete element simulations. By associating each integration point with an368

RVE, the coupling of the micro-problem (DEM) and macro-problem (FEM) is established by replacing369

macroscopic phenomenological relations with DEM simulations for each incremental time step. [Miehe370

and Bayreuther, 2007, Nitka et al., 2011, Guo and Zhao, 2014, Liu et al., 2015, Wang and Sun, 2016a,b].371

This approach is nevertheless very expensive, as each constitutive update at each integration point would372

require an individual sub-scale DEM simulation performed on a different RVE at each incremental step.373

While parallel implementation is efficient for the hierarchical DEM-FEM coupling approach (as the DEM374

simulations can be embarrassingly parallel), the total number of required DEM simulations still grows375

proportionally with the mesh size used in the macroscopic problems. This cost becomes more profound376

when information across more than two scales become important, as shown in the dual-porosity, dual-377

permeability poromechanics problem illustrated in Figure 6.378

On the other hand, the offline hierarchical coupling method does not directly use the DEM simula-379

tions during the macroscopic simulations. Rather, it involves an additional step in which the sub-scale380

simulations are used to generate a database. This database is then used to calibrate a surrogate model that381

is sufficiently efficient for macroscopic boundary value problems. The surrogate model can be simply a382

phenomenological model [Keshavarz and Ghosh, 2013, Liu et al., 2016], a reduced-order sub-scale model383

[Fish, 2013, Yvonnet and He, 2007, Zahr et al., 2017] or a data-driven model [Kirchdoerfer and Ortiz, 2016].384

The offline hierarchical technique, if conducted properly, has at least two advantages. First, it costs less as385

the offline techniques as it does not need on-the-fly sub-scale simulations. Second, the offline treatment386

provides an opportunity for one to combine real and virtual data together to improve the accuracy of387

numerical simulations.388

As shown in Figure 6, we will leverage these advantages to conduct a simulation that links the hydro-389

mechanical simulations of fractured porous media across three scales. In particular, our objective is to390

introduce a recursive training procedure where the database generated from small-scale simulations would391

be used to train a meso-scale RNN data-driven model, while the meso-scale RNN-FEM model will be used392

to generate another database to train the macroscopic data-driven model used for field scale simulations,393

as shown in Figure 7. Here we first assume that the principle of separation of scale is valid such that,394

lmicro ≤ lmeso ≤ lmacro. (26)

Previously, Wang and Sun [2016b] has established a finite strain DEM-FEM coupling model to simulate395

two-phase poromechanics problem. Here we extend this work and focus on the case where intense local-396

ization due to damage or fractures occurs across the micro-, meso- and macroscopic scales. As a result,397

we require two sets of numerical simulations to generate the appropriate database to first link micro-398

mechanical DEM simulations to the meso-scale RVE, then again link the meso-scale DEM-FEM simulation399

to macroscopic scale field problem.400

The first micro-mechanical simulation database consists of simulation results obtained from a DEM-401

network model in which DEM assemblies are subjected to different loading paths. The constitutive laws402

(traction-separation law and anisotropic permeability of macroscopic pore space) obtained from homoge-403

nizing the DEM responses are used as the data set for training and validating the neural network models.404

Here we assume that the mesoscale model employs a finite element discretization with displacement, pore405

pressure and their corresponding jumps as unknown in each incremental time step. Applying the effec-406

tive stress principle, we postulate that there exists an effective stress such that it solely depends on the407

deformation and deformation history of the solid skeleton [Terzaghi, 1943, Biot, 1941].408

In the infinitesimal regime, the Hill-Mandel micro-heterogeneity condition requires the volume average409

of the virtual power in the RVE to equal the virtual power done by the volume averages of power-conjugate410

stress and deformation measures. In terms of stress σ′ and infinitesimal strain ε:411

〈σ′〉 : 〈ε̇〉 = 〈σ′ : ε̇〉 (27)

The traction 〈T ′Γ〉 averaged in the RVE representing the interface is given by,412

〈T ′Γ〉 = 〈σ′〉 · n, (28)
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Fig. 7: Hierarchy of a multi-scale multi-physics poromechanics problem for fluid-infiltrating media. Black
arrow represents a definition or a ”universal principle”; red arrow represents either a phenomenological
relation or an operator that is defined not based on first principles.

where n is a unit vector normal to the interface and m is a unit vector tangential to the interface. The413

average infinitesimal strain is defined in terms of JuK and the initial height of the RVE h0:414

〈ε〉 = sym(
1
h0

JuK⊗n). (29)

Thus, the Hill-Mandel lemma in the interface in terms of 〈T ′Γ〉 and JuK is given by:415

h0〈σ′ : ε̇〉 = 〈T ′Γ〉 · ˙JuK. (30)

In the infinitesimal regime, the time derivative of displacement jump reads,416

˙JuK = ˙JuKnn + ˙JuKmm. (31)

The Hill-Mandel lemma for the interface therefore can be rewritten as,417

h0〈σ′ : ε̇〉 = = 〈Tn〉Ju̇Kn + 〈Tm〉Ju̇Km. (32)

According to Eq. (28), effective traction in the normal and tangential direction can be written as,418

〈Tn〉 = 〈σ′〉 · n · n
〈Tm〉 = 〈σ′〉 · n ·m

(33)
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where the overall effective stress is given by,419

〈σ′〉 = 1
V0

Nc

∑
c

f c ⊗ lc (34)

where V0 is the initial volume of the RVE. f c is the contact force at the grain contact x + yc ∈ R3. lc is420

the branch vector, the vector that connects the centroids of two grains forming the contact. Nc is the total421

number of particles in the RVE. Among the admissible boundary conditions fulfilling the Hill-Mandel422

micro-heterogeneity condition, we adopt the periodic boundary conditions [Miehe et al., 2010], where the423

motion of a particle on the boundary of the RVE is characterized by, assuming rigid particles,424

x(X) = 〈F〉 · Xc + wc + R · (X − Xc) (35)

where Xc is the initial position of particle center, wc is the displacement fluctuation and R describes the425

particle rotation. For a pair of particles on opposite boundaries ∂V+ and ∂V−, the periodicity enforces the426

periodicity of fluctuations and rotations427

w−c = w+
c , R− = R+, (36)

and the anti-periodicity of support forces and couples428

a−c = −a+
c , m−c = −m+

c , (37)

where ac is the opposite of the resultant force on the boundary particle exerted by other particles, mc is the429

opposite of the resultant couple about the center Xc on the boundary particle.430

The theoretical basis and the calculation of homogenized permeability has been previously studied431

in Du and Ostoja-Starzewski [2006], Ostoja-Starzewski et al. [2007], Sun et al. [2011a]. Assuming that the432

DEM assembly is used to model the strong discontinuity which often becomes flow conduit or flow bar-433

rier, we may again use a Hill-Mandel lemma corresponding to the Darcy’s law to determine the effective434

permeability of the assembly, i.e., [Du and Ostoja-Starzewski, 2006],435

〈∇p · q〉 = 〈∇p〉 · 〈q〉 (38)

Eq. 38 can be satisfied by the Dirichlet boundary condition in which the pore pressure difference across two436

opposite face is prescribed and Darcy’s velocity is determined. As a result, the effective permeability tensor437

of a RVE can be determined via numerical flow experiment on the RVE. The fluid flux vector q within the438

RVE is computed when subjected to pressure gradient ∇p, and the permeability kRVE is determined by439

Darcy’s law440

q = − 1
µ

kRVE∇p. (39)

Among the solution strategies, the numerical solution of Stokes equations using finite element or Lattice-441

Boltzmann method yield accurate results but require large computational resources. This work resorts to442

the pore network flow model which simplifies the pores as nodes interconnected by edges allowing fluid443

flow [Bryant et al., 1993, Chareyre et al., 2012]. The first step of the homogenization procedure of per-444

meability is the domain decomposition of the DEM sphere packing. This is achieved by well developed445

Delaunay triangulation and dual Voronoi graph algorithms [Edelsbrunner and Shah, 1996, Chareyre et al.,446

2012]. Using the particle centers as the triangulation nodes, the deformed micro-scale domain Ωµ is de-447

composed into cells Ωµ =
⋃Nt

i=1 Ωi
µ. Ωi

µ is triangle in 2D analysis and tetrahedron in 3D analysis. The 2D448

concepts are adopted in the following descriptions. Each triangular cell Ωi
µ encloses a pore space of volume449

Vi
v between three particles. The remaining solid space is the intersection of Ωi

µ with the three particles and450

has the volume Vi
s . The dual domain decomposition of Ωµ into Voronoi cells generates the pore network in451

the DEM assembly. Each node is regarded as the center of the pore space in a triangular cell Ωi
µ and each452

edge serves as the flow pipe connecting two pore space centers.453

The next step is to define the local conductance of each edge (”pipe”) in the flow network. Consider an454

edge connecting the pore i and j of cells Ωi
µ and Ωj

µ, respectively. Suppose that the flux in this pipe is qij
455
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when i at position xi has the pressure pi and j at position ji has the pressure pj, and that the length of the456

pipe is Lij = ||xi − xj||2, the local conductance gij relates these quantities by,457

qij · (xi − xj) = qij =
gij

µ

pi − pj

Lij . (40)

Extensive studies have been conducted on defining gij in pore network models [Piri and Blunt, 2005,458

Hilpert et al., 2003]. This work adopts the definition in Chareyre et al. [2012], in which a new method of459

determining hydraulic radius HRij of a cross-section of complex geometry is proposed. The local conduc-460

tance admits the expression461

gij = α Aij (HRij)2. (41)

where α is a non-dimensional factor reflecting the pore throat shape (α = 0.5 in this work), Aij is the cross-462

sectional area of the throat. A domain Θij around the throat between two pore spaces is defined based on463

the triangular cells and the dual Voronoi cells. Its volume is φij and the total area of its boundaries is γij.464

The hydraulic radius is given by465

HRij =
φij

γij . (42)

In the numerical example of this work, we adopt the micro-scale DEM assembly as the hydro-mechanical466

constitutive model for the sealing fault, which has an intrinsic permeability in the order of 10−14 m2. This467

low level of permeability is observed in porous media that often has a porosity of 0.1-0.2. However, in the468

DEM numerical assembly, where mono-disperse spheres are adopted to represent the particles, this poros-469

ity is not possible to achieve under confining stress in the order of Mega Pascals. The lowest porosity of470

the RVE is still higher than 0.3. This discrepancy comes from the poor representation of the actual shape471

of grains in real soils by the idealized spheres. Realistic and accurate porosity will be reached by using472

numerical particles with complex shapes, yet this requires more powerful DEM simulation tools and is out473

of the scope of this study. Hence the permeability obtained from the flow network simulation on the micro-474

scale DEM assembly is artificially scaled to the order of 10−14 m2. Our focus lies on the path-dependent475

changes in permeabilities in the normal and tangential directions of the strong discontinuity, following the476

displacement jumps applied to the interface.477

Once the DEM assembly generates a sufficiently large database, the database can be used to train the478

data-driven model. Typically one would like to test a large variety of different loading paths such that479

different responses (torsion, shear, stretch, compression, loading & unloading) can be anticipated. The480

exact content of the database is often determined after a trial-and-error procedure. The size of database481

strongly depends on the exact configuration, type and the training process used for the neural network.482

Understandably, it could be counterproductive to generate a large database for a small neural network. On483

the other hand, it also does not make sense to have a very deep and complex neural network design while484

the data available for the supervised training and validation are limited. The detailed description on the485

design of the neural network will be presented in the next section.486

One may think of the trained meso-scale data-driven model as a representation of the data or as a487

surrogate model. However, the advantage of the neural network as surrogate model is that one may easily488

adjust the neural network configuration, whereas changing from one surrogate model to another often489

require a substantial amount of work to identify material parameters.490

After the completion of the training of the meso-scale data-driven model used to represent the strong491

discontinuity at the meso-scale, we then generate another set of RVE that uses the data-driven model as492

a replacement of the DEM model to capture the traction-separation law of the localized damage zones at493

the meso-scale. We then subject the meso-scale RVE to various loading paths and obtain the simulated494

responses from the the hybrid neural network/finite element model as shown in Figure 8. If there is no495

comparable experimental data available, then the simulated responses of the dual-porosity material con-496

stitute the database for the data-driven model used in field-scale problems.497
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RNN	data-driven	
model	for	meso-
scale	localized	
damage	zone

Isotropic	linear	
elastic	material	
model	for	host	
matrix

𝜎, 𝑇, 𝑘%, k', 𝑘( 𝜎, 𝑇, 𝑘%, k', 𝑘(

Admissible	BC	from:	
1.	macroscopic	Strain:	𝜖
2.	Displacement	jump:	 𝑢

Homogenized	macroscopic output	from	mesoscale	hybrid	RNN-FEM	

Fig. 8: The generation of database for macroscopic data-driven model using hybrid neural-network / finite
element model. In the meso-scale simulations, we consider the localized damage zone as a dual-porosity
material in which the data-driven model provides the traction-separation law and the flow prediction
normal and orthogonal to the interface while the responses of the host matrix is captured by a simple elastic
materials. The meso-scale RVEs are then subjected to various loadings, and the responses are recorded and
used to train and validate the macroscopic data-driven model. In this figure, displacement field is scaled
by a factor of 50.

4 Offline bridging scales via recurrent neural network498

In a nutshell, machine learning refers to the ability of a computer to learn without being explicitly pro-499

grammed. In the field of computational mechanics, machine learning has been widely used for finding the500

bases of the reduced dimensional space for reduced order modeling, and for replacing constitutive laws501

with trained artificial neural network. The latter tasks have found a various degree of success in previous502

work such as Ghaboussi et al. [1991] and Lefik and Schrefler [2003]. One key aspect that is critical for the503

application of the solid mechanics applications is that the machine learning process must be able to gener-504

ate path dependent responses such that the strain, strain rate and strain history may all affect the resultant505

stress responses. The ability of replicating history dependent behavior is equally important for capturing506

the hydraulic responses. For instance, the effective permeability of a porous rock may be influenced by the507

damage of the host matrix. Furthermore, water retention curve, the relation between degree of saturation508

and suction, is known to be dependent on the wetting and drying history of the pores. In the poromechan-509

ics literature [Johari et al., 2006, Lamorski et al., 2008], the hydro-mechanical path-dependent behavior has510

been enforced by additional input in a feed-forward neural network or support vector machine.511

In this work, we propose a number of new innovations for the neural network models built specifically512

for path-dependent materials with potential failures. First, we use a specific type of recurrent neural net-513

work called long-short-term-memory neural network to create the effect of internal states or memory to514

capture the path-dependent behavior (Section 4.2), while overcoming the gradient vanishing or exploding515

issues commonly encountered in training RNN with deep hidden layers (Section 4.3). Meanwhile, we also516

introduce a new technique in which micro-structural attributes, such as fabric tensors, higher-order defor-517

mation measures are used to improve the accuracy of the constitutive responses. To avoid overfitting and518

dealing with noisy data, the introduction of a dropout layer for the RNN network model is discussed (Sec-519
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tion 4.4). Finally, we also analyze the lack of objectivity in the previous neural network model and propose520

the usages of spectral form and Lie algebra to address this without extending the database (Section 4.5).521

Finally, the implementation of the algorithms that construct, train and validate the data-driven model will522

be discussed (Section 4.6). Throughout this section, we will provide a number of numerical experiments523

within each sub-section to demonstrate the rationale of these concepts and the execution of these ideas.524

4.1 Overview of supervised machine learning with artificial neural network525

For completeness, we provide a brief summary of the artificial neural network and the applications to com-526

putational mechanics problems. More comprehensive descriptions can be found in multiple sources across527

disciplines, ranging from weather forecasting (cf.Gardner and Dorling [1998], signal processing (cf. Co-528

chocki and Unbehauen [1993]), renewable energy applications (cf. Kalogirou [2001]), to support decision529

for cancer treatment (cf. Lisboa and Taktak [2006]). Here our focus is on the application of computational530

mechanics problems. The classical modeling of poromechanics problems and more generally computa-531

tional machine problems often involves the following steps:532

1. First, one derive the field theory which is often derived from first principles (e.g. balance of linear and533

angular momentum, mass, energy and thermodynamic laws).534

2. Then, proper constitutive laws are chosen to replicate the responses of a particular type of materials or535

microstructures [Zienkiewicz et al., 1999].536

3. Experimental data are then used to calibrate the computational models. The identification of material537

parameters are sometime conducted manually, but general speaking the material parameter identifica-538

tion procedure can be recast as optimization problems [Liu et al., 2016].539

4. Finally, the proposed model is verified against benchmarks and validated with experiment data that540

are not used for calibrations such that the forward prediction ability can be measured [Wang and Sun,541

2016a,b].542

In the previous work that applies neural network and supervised learning for computational mechanics543

problems, Steps 2 and 3 are often bypassed. Instead, data set obtained from experiments are first split into544

two mutually exclusively subsets, i.e. (1) the training set, which is used for machine learning and (2) the545

validation set, which is used for validation. Following this step, an artificial neural network is generated.546

The design of an artificial neural network and many of the evolution roles are inspired by the biological547

counterpart. Basically an artificial neural network consists of at least three types of layers, the input layer,548

in which the neuron carries the information of the input, the hidden layers, which are the components549

that carries out the neural computations and the output layer, which stores the output results, as shown in550

Figure 9. .

Fig. 9: An example of artificial neural network with 4 inputs, 5 hidden layers with different number of
neurons and 3 outputs. Figure adopted from Open Neural Networks Library.

551

In the hidden layers, each artificial neuron or vertex is assigned an initial weight. A forward prediction552

can be made by propagating signals through the neuron network from the input layer. Depending on the553
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input signals coming from the connected neurons, each neuron may activate, de-activate or change. This554

change may in return affect the weight or signal of the connected neuron. This propagation of information555

can be hierarchical in which case the artificial neural network itself is a directed acyclic graph. In this556

case, the neural computation can be regarded as a propagation of information from the upstream to the557

downstream. At the very end of the neural computation, the output layer will contain the output data.558

In the case where supervised learning is used, the training data set will be used as the benchmark of the559

neural network.560

The supervised learning is a procedure in which one attempts to adjust the weight of the neural net-561

work such that the discrepancy between the benchmark and prediction is minimized. It should be noticed562

that the discrepancy is measured by the cost (or objective) function. When the forward prediction for a563

given input signal is computed, the prediction stored in the output layer will be compared with the bench-564

mark and the cost or error is updated. Following this step, the error values of each vertex in the output565

layer will be backward propagated such that each vertex in the hidden layer will receive an error value.566

This error value is then used to compute the gradient of the cost function with respect to the weight corre-567

sponding to each vertex. This gradient term is then used to update the weights such that the cost function568

is minimized.569

For instance, if we replace the constitutive law with neural network for elastic materials, then the input570

will be a strain measure and the output can be stress measure. However, this input and output is not the571

only feasible choice. For instance, one may use both the strain and strain rate as input and output the stress572

for a rate-dependent material [Jung and Ghaboussi, 2006]. For material that exhibits history dependent573

behaviors, Lefik and Schrefler [2003] has demonstrated that an incremental form, which contains the strain574

components, the stress components and the incremental of strain expressed in a Cartesian coordinate sys-575

tem can be used as input to enforce ”memory” such that the history-dependent behavior can be replicated.576

In this work, we will instead use a recurrent neural network to capture this memory effect exhibited in577

path-dependent porous media.578

4.2 Deep learning with recurrent neural network579

The recurrent neural network (RNN) is an umbrella term for artificial neural networks with connection580

topology possesses cycles [Lukoševičius and Jaeger, 2009]. In other words, the recurrent neural network581

considers data existing as sequences and the output of a layer in the previous step is added back as ad-582

ditional input and fed back into the same layer to produce the output (hence the name recurrent neural583

network).584

The existence of the cycles leads to a profound difference, as it resembles how a history-dependent585

process evolve in time with cause-and-effect relationship (e.g. translating paragraphs of content between586

different languages, analysis of video surveillance). While classical artificial neural network can be re-587

garded as a mathematical function, the recurrent neural is a dynamical system model of the biological588

neural networks that possess memory and is able to process arbitrary sequences of input and generate arbi-589

trary sequences of output. These important features have made RNN versatile among many applications590

that require learning from temporal data such as speech recognition, machine translation, quick-type for591

smartphones and driver-less car technology. In structural engineering, RNN has been used to perform592

model-free structural analysis in which the structural behavior is predicted without any physical model593

[Graf et al., 2010]. Similar approach has been applied in geotechnical engineering in which an RNN is used594

to replicate stress-strain relation of sand subjected to monotonic triaxial compression loading [Zhu et al.,595

1998].596

In all the application mentioned above, the RNN machine learning procedure is often used to produce597

data-driven model that completely replace the constitutive models based on human interpreted knowl-598

edge. In this work, we take a different approach in which the machine learning is not used to generate599

model-free prediction but to be used for generating links for bridging simulations across scales in an of-600

fline fashion. Furthermore, we also retain the usage of the mechanics principles whenever possible in the601

multiphysical model conceptualized as a directed graph. Ultimately, the resultant model represents a hy-602

bridization of human- and machine-interpreted knowledge that can be used to generate predictions and603

as forecast engine. In the following subsections, we will describe the specific techniques we used to build604
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the recurrent neural network and how it can be trained using a combination of data generated from exper-605

iments and micro-mechanical simulations.606

4.3 Overcoming gradient vanishing or exploding issues with long short-term memory architecture607

Despite the exceptional prediction power of RNN as forecast engine, RNN is known to be relatively vul-608

nerable to the vanishing and exploding gradient problems. While a vanishing gradient may lead to the609

change of weight of the nodes in the recurrent neural network that has no significant changes on the error610

measured by the objective function or cost function. By contrary, an exploding gradient may lead to the611

error very sensitive to any small change of weights in the nodes. Both issues can be resolved for mechanics612

data-driven model produced by very small architecture with limited number of hidden layers Lefik and613

Schrefler [2003], Jung and Ghaboussi [2006]. However, since (1) the usage of RNN leads to a larger number614

of nodes in the input layers, (2) the multiscale coupling scheme uses additional microstructural attributes615

as input, and more importantly (3) we intend to study the usage of deep learning which requires a sizable616

number of hidden layers, the vanishing or exploding gradients could be a significant issue.617

Here we take advantages of a technique commonly used in computational linguistics called Long Short618

Term Memory (LSTM). First introduced by Hochreiter and Schmidhuber [1997], the LSTM’s major depar-619

ture is the use of memory blocks, instead of the classical artificial neurons as nodes for RNN. Within a620

memory block, a new entity called ”gate” is introduced to control the flow of information and the state of621

the block, as shown in Figure 10.

Fig. 10: A Long-Short-Term-Memory neuron with input, output, and forget gate to process sequence with
memory effect.

622

A LSTM neuron possesses a state of the memory cells at time t Ct. Define xt as the value of the input623

sequence at time t, and ht as the value of the output sequence at time t. The signal through the forget gate624

is given by625

ft = σ(W f · xt + U f · ht−1 + b f ), (43)

where σ is the sigmoid function σ(x) = 1
1+exp(−x) , W f and U f are weight matrices, b f is bias vector for the626

forget gate.627

The new information to be stored in the cell state is given by the signal it through the input gate628

it = σ(Wi · xt + Ui · ht−1 + bi), (44)

where Wi and Ui are weight matrices, bi is bias vector for the input gate.629

The new candidate value cell state is given by a tanh layer630

C̃t = tanh(WC · xt + UC · ht−1 + bC), (45)



Multi-scale multi-permeability model linked by machine learning 21

where tanh is the hyperbolic tangent function tanh(x) =
exp(x)−exp(−x)
exp(x)+exp(−x) , WC and UC are weight matrices,631

bC is bias vector.632

The old cell state Ct−1 is updated by the above forget and input information, i.e.,633

Ct = ftCt−1 + itC̃t (46)

Finally, for the output signal634

ht = ottanh(Ct) (47)

where ot is the signal through the output gate635

ot = σ(Wo · xt + Uo · ht−1 + bo), (48)

where Wo and Uo are weight matrices, bo is bias vector for the output gate.636

To showcase the advantage of using LSTM with micro-structure information as a part of input features,637

we examine the forward prediction capability of (1) the classical neural network ”ANN” (2) LSTM neural638

network which is specially designed for memorizing sequences ”LSTM” and (3) LSTM neural network that639

also memorizes micro-structure attributes ”LSTM Microstructure Data”. Numerical simple shear tests with640

loading-unloading under different confining pressure (σ = 50 MPa, 60 MPa, 70 MPa, 90 MPa and 100 MPa)641

are conducted on a discrete element assembly and serve as the training data to the three neural network642

models (Fig 11(a)). The ”ANN” model design is similar to Ghaboussi et al. [1991], where the inputs are the643

confining pressure σ, the shear strains γn−1, γn, γn+1 and the shear stresses τn−2, τn−1, τn. The subscripts644

indicate the time steps tn−2, tn−1, tn, tn+1. The output is the shear stress τn+1 at the next time step tn+1.645

Different from the classical ANN model, LSTM neural network accepts sequences of history values646

of the physical parameters as inputs. Thus the input features now consist of the confining pressure σ,647

the sequence of history values of shear strains [γn−1, γn, γn+1], and the sequence of history values of shear648

stresses [τn−2, τn−1, τn]. The output features is again the shear stress τn+1. In addition to the strain and stress649

history, one key innovation we attempted in this paper is to incorporate the evolution of microstructural650

attributes as additional input for the neural network. The micro-structure data adopted in this example651

are the porosity φ of the DEM assembly, the coordination number CN and the fabric tensor AF . AF =652

1
Nc

∑c nc ⊗ nc, where nc is the normal of contact c. Here our goal is to check whether the incorporation of653

any of these additional data as input in the RNN network improves the prediction quality. If the answer654

is positive, it is likely that a human-derived phenomenological model could benefit from the inclusion of655

these physical quantities.656

In a supervised machine learning setting, the LSTM neural network will be adjusted based on the por-657

tion of the dataset used for calibration. After the training or back propagation completes, the relationship658

between these averaged micro-scale attributes and the predicted stress state can be determined. For phe-659

nomenological models where history-dependent behavior is encoded in the evolution of internal variables,660

the influence of micro-structural attributes are often implicitly incorporated (except a few exception such661

as [Dafalias and Manzari, 2004, Fu and Dafalias, 2011]), this could be a difficult task.662

All three neural network models have two hidden layers of 80 nodes, and dropout layers of rate 0.2 are663

placed after each LSTM layer. The function of the dropout layer will be discussed in details in Section 4.4.664

The sigmoid activation function is chosen for the output layer. We also set the same mean squared error as665

the training goal of all three models such that the errors are supposed to reduce to the same level (around666

1e-5).667

Fig 11(b) compares their forward predictions of the loading-unloading behavior under confining pres-668

sure of σ = 80 Mpa (not included in the training set). It is shown that the LSTM model performs better669

than the ANN model, in regard to the peak stress, softening and unloading-reloading cycles. Also, with670

micro-scale information, LSTM can yield closer prediction to the test data than LSTM that only process671

macroscopic strain and stress data.672

Furthermore, determining how much and what types of micro-structure data to be incorporated into673

machine learning model is a challenging task. As an example, we compare three designs of LSTM network674

(1) LSTM with φ (2) LSTM with φ, CN and (3) LSTM with φ, CN, AF (Fig 11(e)). For (1) and (2), the675

additional information on average number of interactions per particle does not improve the generalization676

capability of the LSTM model. The model with the fabric tensor, which describes the matrix of the porous677
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(a) Training data for different confining
pressure σ

(b) Forward prediction of ANN, LSTM
and LSTM with micro-scale data

(c) Forward prediction of LSTM with
different types of micro-scale data in-
cluded

(d) Forward prediction of monolithic
loading

(e) Forward prediction of unloading

Fig. 11: Comparison of forward prediction capacity between different configurations of neural network
models.

media, gives significantly more accurate results. This is due to the deformation mode of the DEM sample.678

The micro-structure are heavily distorted during the shearing. This is reflected in the change of principal679

values and rotation of principal directions of the fabric tensor. φ and CN, however, are hard to represent680

this induced anisotropy in the micro-structure because they are scalars. Thus in this example, the evolution681

history of the fabric tensor is crucial to the forward prediction capacity of the LSTM network.682

Lastly, we study the performance of different LSTM architectures to determine the neural network683

parameters adopted in this work. Table 1 lists 5 neural network configurations that differ in the number684

of hidden layers, the number of neurons per hidden layer and the activation function for the output layer.685

The training data and testing data are the previous dataset from the numerical simple shear tests including686

the micro-scale attributes: porosity, coordination number and fabric tensor. The training data consists of687

500 samples and the testing data contains 100 samples. The training phase consists of 5000 epochs and the688

batch size is 100. The loss function is the standard mean squared error. The value of loss on both training689

and testing data are recorded during the training epochs and are presented in Fig. 12. The performance690

curves show that all architectures can drive the training error down to the 10−5 level and the testing error691

down to the 10−4 level. Configurations 4 and 5 perform better in the training data and Configuration 5 is692

more accurate in predictions. The discrepancy is not significant. Thus for the neural network architecture693

used in this work, we choose the second configuration in Table 1, which gives good training and prediction694
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ANN Configuration Number of hidden
layers

Number of LSTM
neurons per hidden
layer

Activation function
for output layer

1 2 50 Sigmoid
2 2 80 Sigmoid
3 2 100 Sigmoid
4 3 80 Sigmoid
5 2 80 ReLU

Table 1: Different ANN architectures for evaluation of training performance.

performances. The number of LSTM neurons in the network is small so that it will speed up the training695

and the calculation in the triple-scale online simulations.696

(a) Loss on training data (b) Loss on testing data

Fig. 12: Comparison of training performance of different ANN architectures in Table 1.

4.4 Performance of LSTM neural network on noisy data697

In recent work such as Kirchdoerfer and Ortiz [2016], Versino et al. [2017], the authors have presented698

ways to either use variational principles or symbolic regression to build data-driven model for elastic and699

plastic material models with various amount of human knowledge. In particular, Kirchdoerfer and Ortiz700

[2016] has provided a systematic study on how reduction on data points in stress-strain curve affects the701

robustness and accuracy of data-driven model for hyperelastic problems and assess the effect of under-702

fitting. However, since most of the data-driven models are generated from optimization procedure, the703

data-driven models may also generate over-fitting predictions.704

A neural network with LSTM layers and dropout layers is trained with the load-deformation curves705

obtained from experiments performed on Arkose sandstone at various deformation rates (Fig. 13(a) [Peng,706

1973]). This experimental data set contains four displacement rates (0.08 mm/s, 0.16 mm/s 0.32 mm/s,707

0.64mmm/s). 0.08 mm/s, 0.32 mm/s, 0.64 mm/s as the training set and 0.16 mm/s as the test set. Random708

noise in force is added in a point-wise manner to the original data. The random noise follows a normal709
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distribution with zero mean and standard deviation in inverse proportion to the square root of the data710

size, following Kirchdoerfer and Ortiz [2017]. It should be noted that since LSTM networks are designed711

for memorizing sequences, learning the rate-dependent behavior does not require any specific change and712

therefore more convenient than the feed-forward neural network counterpart. The input is composed of713

the next displacement dt+∆t, the history of displacement dt, dt−∆t, dt−2∆t and the history of force ft, ft−∆t,714

ft−2∆t, ft−3∆t. The output is the force ft+∆t at the displacement dt+∆t based on these input sequences. Note715

that the components in the sequences are separated by the real time increment ∆t, then the information716

of deformation rate is directly presented to the LSTM neural network by the input sequences. Thus using717

the deformation rate as an additional input to the neural networks is not necessary. Fig. 13(b) shows that718

the LSTM network has successfully acquired the rate-dependence behavior from the training data and719

returns accurate forward prediction on the testing data. Fig. 13(c) shows the effect of dropout layers on the720

forward predictions of the LSTM model, where different dropout rates of 0.2, 0.4 and 0.6 are compared.721

In this example, the models are capable of suppressing the over-fitting on noisy training data and provide722

accurate predictions. The effect of the dropout layer is minor. Interestingly, the recurrent neural network723

is able to deliver a very accurate forward prediction in a cross-validation study, even though the data724

available are quite limited, as shown in Figure 13. The in-depth study of dropout layers effect and the725

techniques to deal with noise for data-driven constitutive models are important, but is out of the scope of726

this paper. These studies will be conducted in a future dedicated work.727

(a) Experimental data (b) Training and forward prediction (c) Forward prediction on displacement
rate 0.16 mm/s

Fig. 13: Training of LSTM model with rate-dependent experimental data of Arkose sandstone with artificial
noise (after [Peng, 1973]). The models with dropout layers of different dropout rates deliver similar forward
predictions on the testing data in this example.

4.5 Enforcing objectivity and spectral decomposition728

The data-driven constitutive law must preserve the principle of objectivity, i.e., the rotation and transla-729

tion of the observer frame should not affect the material responses. This requirement is not automatically730

satisfied if we only train a neural network with the components of strain tensors expressed in terms of731

a particular coordinate system as input and components of stress tensors in the same coordinate system732

as output. In the 1990s, early works attempting to train artificial neural network to generate data-driven733

constitutive laws did not address this issue, as the goal of this material model is often used only to test734

whether the constitutive laws can generate stress-strain curve for selected experimental settings (e.g. uni-735

axial, biaxial and triaxial loadings) [Ghaboussi et al., 1991] . This is reasonable as the frame indifference736

problem is not apparent (although it can be easily checked) in infinitesimal material point simulation.737
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This situation changes when Lefik and Schrefler [2003] attempts to put data-driven model into finite el-738

ement code and discovers that superposing rigid body rotation with the deformation may lead to changes739

of the stress prediction. They then propose a feasible solution where one simply generates extra stress-740

strain curves from the same experimental data by rotating the material coordinate system multiple times741

such that the neural network can learn the objectivity requirement from the data. This remedy understand-742

ably enlarges the size of the training data set and potentially requires more neurons due to the additional743

rules needed to be learned from data. Furthermore, rather than enforcing the objectivity in a strict sense, the744

artificial network may only recognize the rules approximately, and hence objectivity can only be satisfied745

within a reasonable but not negligible tolerance.746

In this paper, we propose an alternative new approach to enforce the objectivity in the infinitesimal747

regime, which could be advantageous over the previous attempts in the sense that (1) it does not require748

extension of the training sets through imposing rotation on the coordinate system and (2) the resultant749

data-driven model will enforce objectivity in a strict sense.750

The key is to modify the way data are represented in the input and output layers such that the desired751

properties of a physical quantity (e.g. deformation gradient, rotation) in a specific Lie group (e.g. special752

orthogonal group, general linear group, symplectic group) can be retained while the incremental update753

is sought. In the proposed framework, we will first express all the tensor qualities in spectral form. For754

instance, the effective stress, the infinitesimal strain, and permeability tensors can be expressed in terms of755

their corresponding principal values and directions, i.e.,756

σ′ =
3

∑
A=1

σ′An(A)
σ ⊗ n(A)

σ , ε =
3

∑
A=1

εAn(A)
ε ⊗ n(A)

ε , k =
3

∑
A=1

kAn(A)
k ⊗ n(A)

k (49)

where σ′A and n(A)
σ , εA and n(A)

ε , and kA and n(A)
k are the eigenvalues and corresponding normalized757

eigenvectors of effective stress, infinitesimal strain, and permeability tensors respectively. Similarly, the758

forth-order tangential operator can be written in spectral form, i.e.,759

c =
3

∑
A=1

3

∑
B=1

∂σ′A
∂εB

m(A) ⊗m(B)

+
1
2

3

∑
A=1

∑
B 6=A

σ′B − σ′A
εB − εA

(m(AB) ⊗m(AB) + m(AB) ⊗m(BA))

(50)

where m(A) = n(A) ⊗ n(A), m(AB) = n(A) ⊗ n(B). Note that the tangent is composed of two terms, one760

corresponding to the derivative of the principal stress with respect to principal strain at a fixed principal761

direction; another corresponding to the spin of the principal axes [Borja and Tamagnini, 1998]. In the special762

case where strain and stress are coaxial and the permeabilities are isotropic, one may simply design a763

recurrent neural network with the principal strain time history as input and output the principal stresses.764

However, the co-axial assumption may be not appropriate for more complex situations. Here we consider765

the general case in which the strain, stress and permeability tensors are not necessarily coaxial. In this case,766

we must consider how to represent the rotation of the principal directions at each incremental time step.767

Recall that a rigid body rotation can be viewed as a mapping where x = ϕ(X, t) = R(X, t) · X where768

the rotation tensor R belongs to the special orthogonal group SO(3), i.e.,769

SO(3) = {A ∈ GL(3)|det A = 1, AAT = I} (51)

where GL(3) is the general linear group of 3 dimensions. As explained in previous work such as Lefik770

and Schrefler [2003], Lefik et al. [2009], directly using the components of the stress and strain with respect771

to a particular Cartesian coordinate system will make the predicted responses of the data-driven model772

lacking objectivity. The key underlying reason is that the neural network computation contains addition773

(and minus) operations, but the special orthogonal group SO(3) does not belong to the additive abelian774

groups. In other words, adding the components of two rotation tensors together may lead to a tensor that775

does not belong to the SO(3) group (e.g. the tensor resulted from adding two identity tensors together776

where I ∈ SO(3) ). As explained in previous work such as Mota et al. [2013], one way to resolve this issue777
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is to perform the machine learning using the infinitesimal version of the corresponding Lie group, i.e., the778

Lie algebra, i.e.,779

so(3) = {B ∈ M(3)|B = −BT} (52)

where M(3) denotes the space of the 3-by-3 tensors. Note that there are more than one way to parametrize780

the rotation tensor and hence relates a mapping of Lie group with the Lie Algebra counterpart. For instance,781

the finite rotation tensors and the infinitesimal spin tensor can be related via exponential and logarithm782

mapping, i.e., [Krysl and Endres, 2005, Tuzel et al., 2008, Mota et al., 2013]:783

R = exp[Ψ̃] =
∞

∑
k=0

Ψ̃
k

k!
; Ψ = log R =

∞

∑
k=0

(−1)n−1

n
(R− I)n (53)

where Ψ̃ is a skew-symmetric infinitesimal spin tensor that can be defined by three off-diagonal compo-784

nents Ψ̃23, Ψ̃13, Ψ̃12 whereas the diagonal components are zero. In the incremental form, the rotation matrix785

at time tn is updated by786

Rn = Rn−1 exp[∆Ψ̃n] (54)

Therefore, the input for a data-driven constitutive model trained by the recurrent neural network can be787

the history of the principal strains ε1, ε2, ε3 and the history of the incremental rotation parameters of strain788

directions ∆Ψ̃ε
23, ∆Ψ̃ε

13, ∆Ψ̃ε
12. The outputs are the principal stresses σ1, σ2, σ3 and the incremental rotation789

parameters of stress directions ∆Ψ̃σ
23, ∆Ψ̃σ

13, ∆Ψ̃σ
12. It should be noted that for anisotropic materials such as790

single crystals, the supervised machine learning still requires data generated from multiple stress path in791

different orientations, regardless of whether the spectral form is used or not.792

Here, we present a simple numerical test to check whether the data-driven model provides objective793

predictions. The idea is to simply run the same tests multiple time, each with a different reference frame. If794

all these numerical simulations provide the same tensorial output (e.g. stress, permeability) and yield the795

same amount of strain energy. The test to check the objectivity consists of testing whether the strain energy796

density is invariant upon rotation of observer frame and if the stress measured in rotated frame follows797

the tensor rotation transformation rule. The procedure is presented in Algorithm 1.798

Algorithm 1 Objectivity test

1: Generate random Strain ε.
2: Compute Strain Energy W(ε), Cauchy stress σ(ε).
3: Generate random Rotation R ∈ SO(3).
4: Compute ε∗ = R · ε · RT , Strain Energy W(ε∗), Cauchy stress σ∗(ε∗).
5: if W(ε∗) = W(ε) and σ∗ = R · σ · RT then
6: The material model is considered objective.
7: Exit.

We test the objectivity of (1) recurrent neural network only fed with stress and strain components799

(”Direct RNN model”), (2) recurrent neural network with extra data of material responses observed in800

rotated coordinate system (”Objectivity enhanced RNN model”) and (3) the proposed model using spectral801

decomposition (”Spectral RNN model”). As described in the procedure of the test, a random strain ε is802

imposed on the three RNN material models. 500 groups of Euler angles {φ, θ, ψ} ( ”x-convention”, φ ∈803

[0, 2π], θ ∈ [0, π], ψ ∈ [0, 2π]) are randomly generated for the rotation of observer frame via corresponding804

rotation matrices R. 20 of them are randomly picked and presented to the ”Objectivity enhanced RNN805

model” to provide the knowledge of frame indifference, i.e., ε∗ = R · ε · RT serves as additional input806

samples and R · σ · RT as outputs. The relative error on the stress and strain energy read,807

eσ =
||σ∗(ε∗)− R · σ · RT ||

||R · σ · RT ||
; eW =

|W(ε∗)−W(ε)|
|W(ε)| (55)

for all 500 rotation cases in Fig. 14.808
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The ”Direct ANN model” is shown not to be objective. The maximum errors in stress tensor and809

strain energy both exceed 100%, which are unacceptable for material constitutive models. With material810

responses in several rotated observer frames included in training data, the maximum errors are largely811

reduced to about 10%. However, the training data are enlarged twenty times in this numerical test and the812

rigorous objectivity is yet not achieved. The proposed spectral RNN model is demonstrated to be objective,813

since the inputs and outputs are independent on the choice of coordinate systems.814

(a) Direct RNN (b) Objectivity enhanced RNN (c) Spectral RNN

(d) Direct RNN (e) Objectivity enhanced RNN (f) Spectral RNN

Fig. 14: Material frame indifference test for ”Direct RNN model”, ”Objectivity enhanced RNN model” and
”Spectral RNN model”. A random strain ε is imposed on the three RNN material models. 500 randomly
generated cases of rotation of observer frame are illustrated by the rotation vectors of the Euler’s rotation
theorem. The Euler angles {φ, θ, ψ} are converted to Euler parameters {e0, [e1, e2, e3]} and then to the ro-
tation vector. In each case, the vector direction n̂ represents the axis of rotation, while the vector length l
represents the angle of rotation l ∈ [0, 2π] (counterclockwise). The sphere of radius 2π is drawn for guid-
ance. The color of the vectors illustrate the relative errors for the norm of stress tensor (a-c) and the strain
energy (d-f).

4.6 Highlights of Implementation815

As for the implementation, we have leveraged Keras (cf. Chollet et al. [2015]), a high-level Python deep816

learning library, to build the LSTM neural networks and complete the training procedure. This model-817

level library allows for easy and fast prototyping of machine learning models. The low-level operations818

(such as tensor calculus) for machine learning are handled by Tensorflow, an open-source symbolic tensor819

manipulation library developed by Google, Inc [Abadi et al., 2016], serving as the ”backend engine” of820
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Keras. One upshot of Tensorflow is that it has a flexible architecture based on data flow graphs that enable821

easy GPU accelerated training of various types of neural networks.822

The building and training of the LSTM data-driven model in this paper contains four steps. Firstly,823

the data acquired from lower-scale numerical simulations are preprocessed and converted to specific data824

structure compatible with the LSTM training and validation algorithms. The data of numerical simulations825

are stored in comma-separated values (CSV) file and are imported by an open-source Python data analysis826

library Pandas [McKinney et al.]. The data are split to input features and outputs. These data are of different827

scales: 106 for traction, 10−2 for jump, 10−1 for porosity and 10−14 for permeabilities. Thus, each sequence828

of input and output is re-scaled to be within [0, 1] using the MinMaxScaler class in sklearn.preprocessing829

toolkit [Pedregosa et al., 2011]. The input data structure that can be processed by the LSTM model must be830

an array of dimension 3, where the entries for the first dimension are the samples, the second dimension is831

the time history steps and the last dimension are the input features.832

Secondly the multi-layered neural network is constructed with a few and easy-to-modify lines of codes.833

Keras offers a simple way to establish neural networks that incorporate input, LSTM, dropout, output834

layers. Adding or deleting a layer, modifying the number of nodes, changing the activation functions are835

very convenient thanks to the high-level library of Keras.836

Then we are ready to launch the training epochs. We feed the LSTM model with the preprocessed input837

and output data. The back propagation algorithm will modify the weights of the neural network iteratively838

and the loss will be reduced to a small number (about 2e-6 in this work). The learning rate can be reduced839

when the convergence becomes slow. Finally, the performance of the fully-trained LSTM material model is840

assessed on a set of test data that has not been provided to the model in the training phase.841

5 Numerical Experiments842

In this section, we present a triple-scale simulation which links the grain-scale simulations, the meso-scale843

assumed strain simulations and the macroscopic fault simulator together, as shown in Figure 15.844

Fig. 15: Triple-scale data-driven fault reactivation simulations. {X, Y} constitutes the coordinate system
of the macro-scale problem. {M, N} constitutes the local coordinate system of the strong discontinuity in
macro-scale. For meso-scale problem, the coordinate system is {x, y} (co-axial to {M, N}), and the internal
structure distinguishes two coordinate systems of interface: {m1, n1} and {m2, n2}. The corresponding
coordinate systems for micro-scale RVEs are {x′1, y′1} and {x′2, y′2}.



Multi-scale multi-permeability model linked by machine learning 29

Scale & Model Location Parameter Value

Grain-scale DEM micro-discontinuities Particle Young’s modulus E 0.5 GPa
Grain-scale DEM micro-discontinuities Particle Poisson’s ratio ν 0.3
Grain-scale DEM micro-discontinuities Particle Friction Angle π

6
Grain-scale DEM micro-discontinuities Particle density 2600 kg/m3

Grain-scale DEM micro-discontinuities Particle mean diameter 5 mm

Meso-scale FEM meso-scale host matrix Young’s modulus 0.2 GPa
Meso-scale FEM meso-scale host matrix Poisson’s ratio ν 0.2
Meso-scale FEM meso-scale host matrix Intrinsic permeability κ 2e−14 m2

Meso-scale FEM meso-scale host matrix Dynamic viscosity µ 1e−3 Pa · s

Marco-scale FEM marco-scale host matrix Young’s modulus 0.2 GPa
Marco-scale FEM marco-scale host matrix Poisson’s ratio ν 0.2
Marco-scale FEM marco-scale host matrix Porosity of macropore φM 0.1
Marco-scale FEM marco-scale host matrix Porosity of micropore φm 0.2
Marco-scale FEM marco-scale host matrix Intrinsic permeability of macropore kM 1e−12 m2

Marco-scale FEM marco-scale host matrix Intrinsic permeability of micropore km 5e−17 m2

Marco-scale FEM marco-scale host matrix Parameter of mass transfer α ρ f ∗ km
Marco-scale FEM marco-scale host matrix Dynamic viscosity µ 1e−3 Pa · s

Table 2: Material parameters for the grain-, meso- and macro-scale poromechanics problem with embedded
strong discontinuities across three length scales.

Instead of directly replacing phenomenological laws with sub-scale simulations to generate constitutive845

responses as done in Wang and Sun [2016b], we introduce a data-driven offline coupling method in which846

numerical results from sub-scale simulations first constitute material databases. These databases are then847

used to train the recurrent neural network models. Once the training and validation is completed, the848

neural network is then used to replace the phenomenological traction-separation law and the interface849

conductivity models of the dual-porosity systems. This process is applied recursively across length scales850

twice such that the responses of the fault is predicted by a data-driven model trained and validated by data851

set generated with another set of data-driven models at smaller scale.852

As emphasized in Belytschko et al. [2013], macroscopic responses of a material system are often dom-853

inated by the evolution of microstructural attributes, especially after the material bifurcation occurs. Yet,854

the traction-separation law and the conductivity law are often highly simplistic due to the difficulty to pro-855

pose a proper model that captures the phenomenology. By incorporating the micro-structural information856

via deep learning, more realistic and complex constitutive laws can be generated automatically such that857

more accurate simulations of the localized responses can lead to more reliable macroscopic predictions.858

In the following simulations, we assume that embedded strong discontinuities are pre-existed and do859

not propagate. In total, we construct two material databases. One contains the material responses of the860

DEM-network simulations that replicate the grain-scale interface between two bulk materials. In the sec-861

ond material database, the data are obtained via running RNN-FEM simulations where the neural network862

trained by the DEM-network database are re-used to model strong discontinuities, while the bulk material863

is idealized as isotropic elastic material. This recursive training strategy allows one to use machine learning864

as a mean to incorporate sub-scales information in an offline material. As a result, the triple-scale simula-865

tion only requires grain-scale material parameters for the DEM and flow network simulations as well as866

the material parameters used to model the bulk responses. All the path-dependent behaviors are therefore867

originated from the meso-scale interfaces and the macroscopic fault. The material parameters used in the868

numerical example are summarized in Table 2.869

The initial and boundary conditions of the macroscopic 2D fault reactivation problem is shown in Fig-870

ure 15. Note that this initial boundary value problem is a highly simplified model used for demonstration871

and testing purpose. A more dedicated case study intended to capture the actual complex operations of872

fluid injection in an actual field will be conducted in the future but is out of the scope of this study. The size873
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of the macroscopic domain is 1km × 1 km and it is assumed that the field is under plane strain condition.874

To simulate an anisotropic stress condition, the traction applied on the two opposite faces of the square875

domain is 10 MPa and 6 MPa accordingly. These values are held constant during the simulations. Mean-876

while, we prescribe the Darcy’s velocity of the macropores at the injection well about 250 meters from the877

fault line. To test the capacity of the data-driven model and to generate path-dependent responses at the878

field-scale level, this Darcy’s velocity is not held constant but allowed to change over time, with the initial879

Darcy’s velocity equals to 50m/s.880

5.1 Training and validation of material laws for meso-scale interface881

To train the recurrent neural network such that it can replicate the meso-scale hydro-mechanical responses882

of the embedded strong discontinuities, we first conduct 21 grain-scale simulations. The time history of the883

traction, displacement jump, and permeability in the normal and tangential direction, as well as the major884

and minor principal values of the fabric tensor are recorded. 16 of the simulation results are used as the885

training data set and rest 5 of them are used as the validation data set.886

In each RVE simulation, the displacement boundary conditions are prescribed as shown in Figure 16.887

The DEM RVE is of the size of 10cm X 10cm X 5cm, while the averaged grain diameter is 0.5cm. The micro-888

scale traction-separation law and the relation between the micro-structure and the permeability tensor on889

the interface are homogenized from a micro-scale RVE of discrete element particles. A set of displacement890

jump paths {un, us} are applied to the micro-scale RVE, and the tractions {tn, ts} are homogenized at each891

incremental deformation step. Furthermore, at each incremental step, we also construct a flow network892

inferred from the deformed configuration of the DEM assembly and use an inverse problem to compute893

the effective permeability in the tangential and normal directions, as shown in Figure 16.894

Fig. 16: Micro-scale RVE. The initial configuration of the granular assembly (LEFT), the deformed config-
uration of the granular assembly (MIDDLE), and the flow network generated from the deformed configu-
ration used to predict the anisotropic effective permeability (RIGHT).

Before the displacement-driven grain-scale simulation begins, the DEM assembly must be in the stress895

state consistent to the macroscopic boundary condition. This is achieved by subjecting the DEM assembly896

with the right amount of shear and normal tractions along the boundaries.897

The initial state of the micro-scale RVE is determined by the initial state of the macro-scale problem.898

The macro-scale fault with the inclination angle of 80◦ is under a confining pressure of 6 MPa in the X899

direction and 10 MPa in the Y direction.900

σInit
macro =

[
−6 0.
0. −10

]
XY

MPa, (56)

where the subscript XY refers to the frame depicted in Figure 15. To introduce the proper initial stress901

state to the DEM assemblies, we first express this stress tensor in the local frame of the meso-scale RVE as902
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depicted in Figure 15 via coordinate transformation, i.e., σxy = RT · σXY · R such that,903

σInit
meso =

[
−9.88 −0.68
−0.68 −6.12

]
xy

MPa, (57)

where the subscript xy refers to the rotated frame for the meso-scale RVE. Note that since the DEM assem-904

blies are aligned with the strong discontinuities in the meso-structures, the stress state is re-expressed in905

the two local coordinate systems such that the correct traction can be applied to the DEM assemblies to906

generate the correct initial stress state. Recall that the two local coordinate systems are 20 degrees apart907

from each other (one 10 degrees clockwise to the meso-scale frame, one 10 degrees counterclockwise to the908

meso-scale frame). As a result, we have,909

σInit
microRVE1 =

[
−9.88 −0.68
−0.68 −6.12

]
x′1y′1

MPa ; σInit
microRVE2 =

[
−9.88 0.68
0.68 −6.12

]
x′2y′2

MPa. (58)

Once the initial stress state of the DEM assemblies are set, we then run multiple simulations and collect910

the results to form the database for supervised machine learning. The choice of loading cases to be included911

in the training data set is often based on empirical knowledge. In this work, we adopt such design of pro-912

portional loading paths: in each loading case the ratio between the normal displacement un (along the unit913

vector n in Fig. 16) and the tangential displacement us (along the unit vector m in Fig. 16) remains a con-914

stant. In total the training data set contains 16 ratios: un
us

= iπ
8 , i = 0, 1, 2, ..., 15. Similar proportional loading915

paths have also been used to train constitutive laws for bulk materials in [Lefik and Schrefler, 2003]. In916

order for the data-driven model to learn the path-dependent behavior of the interface, we, for each load-917

ing ratio in our cases, prescribe the displacement such that , the norm of the displacement u =
√

u2
n + u2

s918

are prescribed with the following loading-unloading sequences: u first increases to 0.2 of the maximum919

displacement magnitude 0.01 m, then decreases to 0.1 of 0.01 m, and rise again to 0.4, then to 0.2, 0.6, 0.3,920

0.8, 0.4, 1.0, 0.5. Note that, this design of training data set is suitable (but not necessarily optimized) for921

data-driven model used in finite element simulations in which the deformation paths of strong discontinu-922

ities are not known a priori. In many simulation cases, the major deformation paths could be anticipated.923

For instance, in shear band simulations, the shear effects predominate over the opening or closing of the924

interface. Thus the training data set to be constructed for these simulations should incorporate more shear-925

dominate loading paths. Nevertheless, the optimization of training data set is a challenging task and will926

be studied in future work. 5 additional loading paths for testing are also constructed. Some of them are927

monotonic loading, some have different loading-unloading sequences, and in some cases the ratio un
us

is928

not constant. Figure 17 shows a portion of the loading paths designed for machine learning. For brevity,929

we did not include all the available simulations in the database in the paper. Instead, we only show the930

results of 3 training sets and 3 testing sets, which are denoted as TR1, TR2 and TR3 and TE1, TE2 and TE3931

respectively. Nevertheless, the training and validation algorithm as well as the database itself will be made932

available in an open source repository. The discrepancy between the data from micro-scale DEM simu-933

lation XDEM and the results predicted by LSTM neural network XLSTM is quantified by the scaled mean934

squared error given by935

MSE =
1
N

N

∑
i=1

[MinMaxScaler(XDEMi )−MinMaxScaler(XLSTMi )]
2, (59)

where N is the number of data points. XDEM and XLSTM are re-scaled to be within the range [0, 1] using936

the MinMaxScaler as described in the data preprocessing for machine learning in Section 4.6.937

The physical parameters for the input of the LSTM neural network are the sequence of history values938

at time [tn−1, tn, tn+1] of the normal and tangential components of displacement jump, the sequence of939

history values at time [tn−2, tn−1, tn] of the normal and tangential components of traction, and the sequence940

of history values at time [tn−2, tn−1, tn] of the maximum and minimum principal values of the fabric tensor941

of the DEM RVE. The outputs of the LSTM neural network are the normal and tangential components of942

traction at time tn+1, the maximum and minimum principal values of the fabric tensor at time tn+1, and943

the permeabilities normal and tangential to the strong discontinuity at time tn+1.944
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(a) TR1 (b) TR2 (c) TR3

(d) TE1 (e) TE2 (f) TE3

Fig. 17: Loading path of three selected training cases TR1, TR2, TR3 and three selected testing cases TE1,
TE2, TE3 on the micro-scale RVE 1. un and us are the normal and tangential displacement jumps. The
coordinate system is {m1, n1} (or {x′1, y′1}) depicted in Fig. 15. It can be seen that TR1 and TR2 represent
tensile-shear loading cases (as un is positive) and TR3 represents a compressive-shear loading case (un
negative). The numbers mark the sequence of loading-unloading cycles.

Since in many engineering applications, the flow injection rate is transient and changes with time,945

the data-driven traction-separation laws must be able to capture the resultant combined isotropic and946

kinematic hardening mechanisms. Figures 18 and 19 show the comparisons between the DEM simulations947

and the simulated mechanical responses generated from the recurrent neural network in the normal and948

tangential directions. Except for the testing case TE2 in which there are notable discrepancy when the949

thin DEM layers are reloaded, the meo-scale data-driven traction-separation law is able to replicate both950

the cyclic and monotonic loading responses with negligible errors. Remarkably, this is achieved without951

using any internal variables to capture the history-dependent effect. Furthermore, we also show that the952

predicted responses are able to simulate both the damage-plastic flow and the elastic unloading in the953

cyclic responses. This coupled damage-plastic response is attributed to the evolution of the fabric tensors.954

Figures 20 and 21 show the maximum and minimum eigenvalue of the fabric tensors following the pre-955

scribed displacements obtained from DEM and from the RNN predictions. The RNN generated responses956

are able to deliver very accurate predictions of the fabric tensor evolution. This good match is important for957

predicting induced anisotropy and may explain why the traction predictions in Figures 18 and 19 match958

well with the database.959

The predictions of normal and tangential permeabilities following the prescribed displacements are960

shown in Figures 22 and 23 respectively. Again, with the help of characteristic microstructure information,961

the match is satisfying. To sum up, the trained data-driven model is capable of representing the micro-scale962

DEM-flow network model, in terms of traction, permeability, and invariants of fabric tensor. It is ready to963

be used as constitutive law for the strong discontinuity of the meso-scale RVE in the FEM-LSTM coupled964

simulations.965

5.2 Training and validation of material laws for dual-porosity fault966

The path-dependent constitutive model governing the displacement jump induced traction and perme-967

ability changes in the macroscopic sealing fault is provided by the macro-scale data-driven LSTM model.968

The data used to train and test this model are generated from multiscale simulations of the meso-scale969
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(a) TR1, MSE = 3.73e-5 (b) TR2, MSE = 1.05e-4 (c) TR3, MSE = 1.33e-5

(d) TE1, MSE = 2.62e-5 (e) TE2, MSE = 1.21e-3 (f) TE3, MSE = 7.11e-4

Fig. 18: Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model.
Normal traction against normal displacement jump for the selected training and testing cases. The numbers
mark the sequence of loading-unloading cycles. MSE refers to the scaled mean squared error defined in
Eq. 59.

RVE, where the interface behavior comes from the micro-scale RVE. The multiscale model is FEM-LSTM970

coupled, using the data-driven model trained in the previous section.971

In each RVE simulation, the displacement boundary conditions are prescribed as shown in Figure 24.972

The meso-scale RVE is 2D, and has the size of 1m X 1m. A set of displacement jump paths {un, us} are973

applied to the meso-scale RVE, and the tractions {tn, ts} are homogenized at each incremental deformation974

step. Furthermore, at each incremental step, we also conduct an inverse problem to compute the effective975

permeability in the tangential and normal directions, as shown in Figure 24.976

It is important to investigate how well the FEM-LSTM coupled scheme represents the FEM-DEM mul-977

tiscale scheme, where the interface constitutive law comes from the DEM assembly from the previous978

section. An example of comparison is presented, where the meso-scale RVE is subjected to a displacement979

loading path with unloading. Fig. 25 compares the tractions in the normal and tangential directions fol-980

lowing the prescribed displacements. The results are close to each other. Thus FEM-LSTM model could981

approximately represent the FEM-DEM model in the generation of a database. Another alternative is us-982

ing hybrid database. In other words, a portion of the data is from FEM-LSTM model simulations, while the983

other potion is from FEM-DEM model. In the extreme case, all data are from FEM-DEM model, then the984

numerical example in this work will be two-scale data-driven simulation, instead of triple-scale.985

We then run multiple meso-scale simulations and collect the results to form the database for supervised986

machine learning. The design of the training and testing data set is similar to the design in the previous987

section. In the meso-scale RVE, there is no definition of fabric tensor, thus the input data only consists of988

the displacement jumps and tractions in normal and tangential directions. Figure 26 shows a portion of the989

loading paths: TR1, TR2 and TR3 in the training sets and TE1, TE2 and TE3 in the testing sets. The physical990

parameters for the input of the LSTM neural network are the sequence of history values at time [tn−1, tn,991

tn+1] of the normal and tangential components of displacement jump, and the sequence of history values at992

time [tn−2, tn−1, tn] of the normal and tangential components of traction. The outputs of the LSTM neural993

network are the normal and tangential components of traction at time tn+1, and the permeabilities normal994

and tangential to the strong discontinuity at time tn+1.995
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(a) TR1, MSE = 7.09e-4 (b) TR2, MSE = 8.82e-4 (c) TR3, MSE = 1.07e-4

(d) TE1, MSE = 5.98e-4 (e) TE2, MSE = 1.49e-2 (f) TE3, MSE = 4.66e-4

Fig. 19: Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model.
Tangential traction against tangential displacement jump for the selected training and testing cases. The
numbers mark the sequence of loading-unloading cycles. MSE refers to the scaled mean squared error
defined in Eq. 59.

Figures 27 and 28 shows the comparison between the FEM-LSTM simulations and the simulated me-996

chanical responses generated from the recurrent neural network in the normal and tangential directions.997

The predicted responses are able to simulate both the damage-plastic flow and the elastic unloading in998

the cyclic responses. The predictions of normal and tangential permeabilities following the prescribed dis-999

placements are shown in Figures 29 and 30 respectively. The trained data-driven model is ready to be used1000

as constitutive law for the strong discontinuity of the macro-scale problem.1001

5.3 Simulation of macro-scale fault reactivation problem1002

Water is injected to the macro-scale field through the source S located to the right of the sealing fault. The1003

distance between S and the fault is about 250 m (Fig. 32(a)). The prescribed Darcy velocity at the source is1004

shown in Fig. 31(a). The injection profile is composed of three injection-pause cycles, where water supply1005

is provided for 40 hours under constant rate of 50 m/s, followed by a pause for 10 hours before the next cy-1006

cle of injection. We simulate the hydro-mechanical dual-porosity problem with the traction-separation law1007

and macropore permeability tensors along the sealing fault given by the meso-scale data-driven model.1008

The pore pressure in both scales at the source S is presented in Fig. 31(b). The fluid is injected to the1009

macropore space. Upon injection or pause, the macropore injection pressure jumps up or plunge imme-1010

diately, while the micropore pressure at the injection point has the opposite behavior. This is caused by1011

the low mass transfer permeability between the macropores and micropores. Then in the transient regime,1012

when fluid gradually diffuses into the micropores by mass transfer, micropore pressure slowly approaches1013

the macropore pressure. The two pressure will eventually be identical when the diffusion between pores1014

reaches equilibrium. To show the influence of the inter-pore transfer, we present an additional case where1015

the transfer parameter α is ten times higher (Fig. 31(c)). The discrepancy between the pressures is signifi-1016

cantly reduced. The following results are from the low inter-pore transfer case.1017
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(a) TR1, MSE = 1.27e-4 (b) TR2, MSE = 2.81e-4 (c) TR3, MSE = 1.06e-3

(d) TE1, MSE = 1.44e-3 (e) TE2, MSE = 1.26e-3 (f) TE3, MSE = 1.38e-3

Fig. 20: Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model.
Maximum eigenvalue of fabric tensor against normal displacement jump for the selected training and
testing cases. The numbers mark the sequence of loading-unloading cycles. MSE refers to the scaled mean
squared error defined in Eq. 59.

To illustrate the hydraulic response, the macropore pressure field at time 40 h, 100 h and 140 h are1018

presented in Fig. 32. The pressure plume is in the form of circle and expands with increasing amount1019

of water injected through the source (t = 40 h). The pore pressure drops when the injection pauses, but1020

the plume is still expanding (t = 100 h) driven by the excess pore pressure that has not been entirely1021

diffused. When the injection is resumed, the pore pressure also rises again. The form of the pressure plume1022

is disturbed when it reaches the sealing fault, which has a two-order-lower macropore permeability (t =1023

140 h). As for the micropore pressure field, it has a similar but delayed evolution behavior, due to the1024

time required for the fluid transfer between macropores and micropores. The local pressure responses are1025

illustrated in Fig. 33 for three locations in the fault indicated in Fig. 32(a). The distances to the source point1026

dSB > dSA > dSC. It is seen that the closer a point is to the source, the faster the pressure increases upon1027

injection. There is also significant pressure gradient across the less-permeable fault. The difference between1028

macropore and micropore pressure is due to the different permeability in macropores and micropores for1029

the fluid to diffuse in the macro-scale field, and also the low transfer permeability between pores.1030

Due to the fully coupled nature of the problem, the mechanical responses of the porous solid, especially1031

the displacement jump and traction at the strong discontinuity, strongly depend on how pore fluid diffuses1032

inside the pore space. The evolution of macro-scale mean effective stress field during the fluid injection1033

cycles is shown in Fig. 34.1034

It is clear that this field has the same pattern as the pore pressure field. The increase in the mean effective1035

stress is due to the increase in pore pressure, in agreement to the effective stress principle. The evolution1036

of macro-scale differential stress field (Fig. 35) is a combined effect of the far field differential stress, fluid1037

injection and presence of sealing fault. The decrease in normal compression traction makes the fault surface1038

unable to sustain the shear traction, and the fault starts to mobilize.1039

The local displacement and traction responses are illustrated in Fig. 36 and Fig. 37 respectively for three1040

locations in the fault indicated in Fig. 32(a). The traction states that the material at A, B, C experienced1041

during the injection-pause cycles are depicted in Fig. 38.1042



36 Kun Wang, WaiChing Sun

(a) TR1, MSE = 1.16e-4 (b) TR2, MSE = 1.71e-4 (c) TR3, MSE = 1.29e-3

(d) TE1, MSE = 1.45e-3 (e) TE2, MSE = 7.73e-4 (f) TE3, MSE = 9.61e-3

Fig. 21: Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model.
The minimum eigenvalue of fabric tensor against tangential displacement jump for the selected training
and testing cases. The numbers mark the sequence of loading-unloading cycles. MSE refers to the scaled
mean squared error defined in Eq. 59.

These results clearly demonstrate the capacity of our data-driven model in capturing the complex and1043

path-dependent interface behaviors. This is a significant improvement over the phenomenological traction-1044

separation laws where idealized tensile and shear (linear or exponential) behavior is often adopted [Park1045

and Paulino, 2011]. The data-driven model can preserve important mechanical properties of the interface1046

from sub-scale structures while reducing the computational costs compared to full micro-scale models such1047

as DEM.1048

6 Conclusion1049

We introduce a recursive multiscale framework that captures the hydro-mechanical responses of multi-1050

permeability porous media with embedded strong discontinuities across different length scales. Using the1051

directed graph that represents the hierarchy of the numerical models as the starting point, we identify the1052

knowledge gap and the weakest link of a multiscale multiphysics mutli-permeability model and replace1053

this portion of the computational model with a data-driven counterpart. By creating, training and validat-1054

ing recurrent neural network that has the capacity to memorize and interpret history-dependent events,1055

we established a new recursive data-driven approach where information from multiple sub-scales can be1056

used sequentially to generate macroscopic prediction in a cost-efficient manner. The triple-scale coupling1057

simulations are validated at each sub-scale level where data set for training and validation are mutually1058

exclusive to each other. Finally, we also address a number of technical issues, such as lack of objectivity,1059

vanishing and exploding gradients and the over-fitting issues to ensure the robustness and accuracy of the1060

numerical simulations. This hybrid data-driven modeling approach may play a critical role for analyzing1061

problems where human-interpretable knowledge is sufficient to bring closure for forward predictions and1062

for linking simulations across more than two scales in a cost-efficient manner.1063
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(a) TR1, MSE = 9.06e-5 (b) TR2, MSE = 1.17e-4 (c) TR3, MSE = 2.63e-5

(d) TE1, MSE = 2.33e-3 (e) TE2, MSE = 3.10e-3 (f) TE3, MSE = 9.07e-4

Fig. 22: Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model.
Normal permeability against normal displacement jump for the selected training and testing cases. The
numbers mark the sequence of loading-unloading cycles. MSE refers to the scaled mean squared error
defined in Eq. 59.
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Fig. 31: Water supply in the macro-scale fault reactivation problem. (a) Time history of the prescribed injec-
tion velocity in macropores at the source point. (b) Computed responses of injection pressure in macropore
and micropore at the source point (transfer parameter α = ρ f ∗ km). (c) Computed pressures in a com-
parison simulation where the transfer parameter α = 10 ∗ ρ f ∗ km. The numbers mark the sequence of
injection-pause cycles.

Petr Krysl and Lance Endres. Explicit newmark/verlet algorithm for time integration of the rotational1180

dynamics of rigid bodies. International journal for numerical methods in engineering, 62(15):2154–2177, 2005.1181

Kristopher L Kuhlman, Jason E Heath, W Payton Gardner, and David G Robinson. Multiporosity flow of1182

gases in fractured shale formations. Journal of Coal Geology, 109(110):101–146, 2013.1183

Kristopher L Kuhlman, Bwalya Malama, and Jason E Heath. Multiporosity flow in fractured low-1184

permeability rocks. Water Resources Research, 51(2):848–860, 2015.1185



44 Kun Wang, WaiChing Sun

(a) 40 hours (b) 100 hours (c) 140 hours

(d) 40 hours (e) 100 hours (f) 140 hours

Fig. 32: Evolution of macropore pressure (a-c) and micropore pressure (d-f) field. S denotes the fluid source.
A, B, C are three locations on the sealing fault. 40h is the end of the first injection, 100h is the end of the
second pause, and 140h is the end of the third injection.

(a) A (b) B (c) C

Fig. 33: Time history of local macropore and micropore pressure at location A, B, C (Fig. 32(a)) of the sealing
fault. ”Front” refers to the side of fault that is facing the source point. ”Back” is another side that is away
from the source. The numbers mark the sequence of injection-pause cycles.
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(a) 40 hours (b) 100 hours (c) 140 hours

Fig. 34: Evolution of the mean effective stress field in the macro-scale simulation. 40h is the end of the first
injection, 100h is the end of the second pause, and 140h is the end of the third injection.

(a) 40 hours (b) 100 hours (c) 140 hours

Fig. 35: Evolution of the differential stress field in the macro-scale simulation. 40h is the end of the first
injection, 100h is the end of the second pause, and 140h is the end of the third injection.

(a) A (b) B (c) C

Fig. 36: Time history of normal and tangential displacement jumps at location A, B, C (Fig. 32(a)) of the seal-
ing fault. The coordinate system is {M, N} (or {x, y}) depicted in Fig. 15. The numbers mark the sequence
of injection-pause cycles.
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(a) A (b) B (c) C

Fig. 37: Time history of normal and tangential displacement tractions at location A, B, C (Fig. 32(a)) of
the sealing fault. The coordinate system is {M, N} (or {x, y}) depicted in Fig. 15. The numbers mark the
sequence of injection-pause cycles.

(a) A (b) B (c) C

Fig. 38: Traction Path at location A, B, C (Fig. 32(a)) of the sealing fault. The coordinate system is {M, N}
(or {x, y}) depicted in Fig. 15. The numbers mark the sequence of injection-pause cycles.

M Lefik and BA Schrefler. Artificial neural network as an incremental non-linear constitutive model for a1191

finite element code. Computer methods in applied mechanics and engineering, 192(28):3265–3283, 2003.1192

M Lefik, DP Boso, and BA Schrefler. Artificial neural networks in numerical modelling of composites.1193

Computer Methods in Applied Mechanics and Engineering, 198(21):1785–1804, 2009.1194

Jolanta Lewandowska and J-L Auriault. Extension of biot theory to the problem of saturated microporous1195

elastic media with isolated cracks or/and vugs. International Journal for Numerical and Analytical Methods1196

in Geomechanics, 37(16):2611–2628, 2013.1197

Roland W Lewis and Hamid R Ghafouri. A novel finite element double porosity model for multiphase flow1198

through deformable fractured porous media. International journal for numerical and analytical methods in1199

geomechanics, 21(11):789–816, 1997.1200

Paulo J Lisboa and Azzam FG Taktak. The use of artificial neural networks in decision support in cancer:1201

a systematic review. Neural networks, 19(4):408–415, 2006.1202

Yang Liu, WaiChing Sun, Zifeng Yuan, and Jacob Fish. A nonlocal multiscale discrete-continuum model1203

for predicting mechanical behavior of granular materials. International Journal for Numerical Methods in1204

Engineering, 2015.1205

Yang Liu, WaiChing Sun, and Jacob Fish. Determining material parameters for critical state plasticity1206

models based on multilevel extended digital database. Journal of Applied Mechanics, 83(1):011003, 2016.1207
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