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Abstract Many engineering applications and geological processes involve embedded discontinuities in6

porous media across multiple length scales (e.g. rock joints, grain boundaries, deformation bands and7

faults). Understanding the multiscale path-dependent hydro-mechanical responses of these interfaces across8

length scales is of ultimate importance for applications such as CO2 sequestration, hydraulic fracture and9

earthquake rupture dynamics. While there exist mathematical frameworks such as extended finite element10

and assumed strain to replicate the kinematics of the interfaces, modeling the cyclic hydro-mechanical11

constitutive responses of the interfaces remains a difficult task. This paper presents a semi-data-driven12

multiscale approach that obtains both the traction-separation law and the aperture-porosity-permeability13

relation from micro-mechanical simulations performed on representative elementary volumes in the finite14

deformation range. To speed up the multiscale simulations, the incremental constitutive updates of the15

mechanical responses are obtained from discrete element simulations at the representative elementary vol-16

ume whereas the hydraulic responses are generated from a neural network trained with data from lattice17

Boltzmann simulations. These responses are then linked to a macroscopic dual-permeability model. This18

approach allows one to bypass the need of deriving multi-physical phenomenological laws for complex19

loading paths. More importantly, it enables the capturing of the evolving anisotropy of the permeabilities20

of the macro- and micro-pores. A set of numerical experiments are used to demonstrate the robustness of21

the proposed model.22

Keywords discrete-continuum coupling, strong discontinuity, machine learning, LBM-DEM-FEM,23

dual-permeability, fractured porous media24

1 Introduction25

The geological complexity of many geo-systems, such as fractured reservoirs and faults often makes the26

single-permeability Darcian model inadequate to replicate the complex hydraulic behaviors [Gong et al.,27

2008]. This complexity is linked to the wide spectrum of pore sizes. The pores among particles, inside in-28

dividual grains and crystalline planes and those formed by the dissolution and cavities are often of orders29

of difference in sizes. In the idealized cases where pore space distribution of a porous medium is, roughly30

speaking, bi-modal (e.g. fractured reservoir composed of sandstone) a dual-porosity dual-permeability31

model can be used to approximate the hydraulic behavior [Gerke and Genuchten, 1993, Pride and Berry-32

man, 2003, Kuhlman et al., 2015, Borja and Choo, 2016, Choo et al., 2016]. For a fissured porous medium33

exhibiting a major fault, the fissures and the fault can be considered as macropores, while the pores in the34

intact solid matrix are considered as the micropores (Figure. 1). Then the macroscopic flow in this dou-35

ble porosity medium is the overlapping of both flows inside the individual systems of macropores and36
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micropores, as well as the fluid transfer between the two systems of pores. Should mechanical forces or37

perturbations in pore pressure field take place, the major fault which is previously stable is put at the risk38

of being reactivated. The evolution of the microstructure of the fault results in the change of the effective39

macropore permeability and hence the fluid flow in macropores.40

Fig. 1: Schematic representation of representative elementary volumes (REVs) of a fissured porous medium
with pre-existing fault through double porosity model. REV 1 is a multi-dimensional periodic cell of stan-
dard double-porosity medium outside the major fault, with the net of fissures regarded as macropores and
the voids in intact solid matrix as micropores. REV 2 is a cell of double-porosity medium of a fault neigh-
borhood, with the major fault (induced by cracking, shear band formation, etc, and will be reactivated
under mechanical forces or changes in pore pressure) regarded as macropore spaces in addition to the net
of fissures. REV 2 has a one-dimensional periodicity along the fault. The formulation of multiscale finite
element with embedded strong discontinuity in this paper makes use of the second REV.

Strong discontinuities such as grain boundaries, flaws, cracks, joints, and faults are very common across41

multiple length scales in geological materials. Understanding the hydro-mechanical responses of the inter-42

faces is important for numerous engineering applications, such as oil exploration, geothermal applications,43

geological disposal of nuclear waste and CO2. The presence of strong discontinuities is important due to (1)44

their significant roles in altering the mechanical responses of the host system (e.g. strain localization, crack45

bands), (2) inducing anisotropic changes in the flow characteristics as they function as flow barrier (e.g.46

compaction band) or channels (e.g. tensile cracks), as well as (3) changing the hydro-mechanical coupling47

mechanisms under different loading conditions [Paterson and Wong, 2005, Sun et al., 2011a,b, Wibberley48

et al., 2016, Wang and Sun, 2017b].49

A common approach to capture the hydro-mechanical responses is to use phenomenological laws de-50

signed for these interfaces [Xu and Needleman, 1994, Bishop, 2009, De Borst et al., 2012]. Within a finite51

element model, the interfaces are then either represented by surface elements inserted in between volume52

elements or enriched basis designed to captures the kinematics of the embedded strong discontinuities53

(e.g. assumed strain or extended finite element) within an element (e.g. Moës et al. [1999], Dolbow and Be-54

lytschko [1999], Callari and Armero [2002, 2004], Borja [2008], Liu and Borja [2008], Radovitzky et al. [2011],55

Sun et al. [2016], Rotunno et al. [2017]). Regardless of the techniques used to represent the strong discon-56

tinuities, the quality of the simulations strongly depends on the cohesive zone model chosen to represent57

the interfaces. However, as pointed out by Hirschberger et al. [2008] and exemplified in Park and Paulino58

[2011], many cohesive zone models are highly idealized constitutive responses where softening regimes59

are often curve-fitted via simple mathematical expressions (e.g. cubic polynomial, smoothed trapezoidal,60

exponential, and bilinear) to yield the right amount of fracture energy and stiffness. As a result, captur-61

ing the mixed-mode and cyclic responses remains a difficult task. Furthermore, the mixed-mode traction-62

separation is often an extension of the Mode I separation law where one simply uses an effective separation63

(defined as a function of normal and tangential displacement jumps) to determine the normal and tangen-64
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tial traction [Tvergaard and Hutchinson, 1992, Pandolfi et al., 2000]. In the case where effective separation65

is defined as a weighted norm of the normal and tangential component of the displacement jumps, the66

difference between Mode I crack and anti-crack cannot be captured. [Park and Paulino, 2011, Wang and67

Sun, 2017b]. This assessment has been also discussed in Belytschko et al. [2013] in which the complications68

due to the fact that unstable materials cannot maintain a homogeneous state even when the perturbation is69

small. This limitation is more profound when the interfaces possess multiscale microstructures where (1)70

meso-scale features such as voids and inclusions of sizes spanning multiple orders of magnitudes (e.g. the71

dual-porosity materials); (2) the microstructural length scale is comparable to the thickness of the interfaces72

(e.g. granular materials) and (3) when mixed-mode separation and closure happen cyclically.73

The objective of this paper is to fill the alluded knowledge gaps via multiscale techniques designed74

specifically to capture the hydro-mechanical responses of interfaces in fluid-infiltrating porous materials in75

the finite deformation range. In particular, we introduce the computational homogenization procedure for76

dual-porosity porous layer based on the generalized effective stress principle. Extending the previous work77

in Liu et al. [2015], Wang and Sun [2016a,b], we establish micro-macro transitions to generate the proper78

hydro-mechanical responses from representative volume element (RVE) simulations as a replacement for79

the phenomenological traction-separation law and cubic laws for interfaces. Furthermore, as spatial aver-80

aging effective permeability of fractured porous system often leads to erroneous predictions on the flow81

characteristics, the interactions of the pore-fluid in the embedded strong discontinuities and that in the host82

porous matrix is captured via a dual-permeability system. As the porous media with strong discontinuities83

is viewed as a dual-permeability system at the macroscopic scale, a homogenization procedure is used to84

obtain the macro-pore, micro-pore and interfacial effective permeabilities [Le Garzic et al., 2011, Arbogast85

et al., 1990]. By considering the Hill-Mandel lemma for Darcy’s flow in the macro- and micro-pore sys-86

tems, admissible boundary conditions are defined such that both the macro- and micro-permeabilities can87

be estimated. Numerical examples are used to demonstrate the robustness and capacity of the multiscale88

poromechanics models. To the best knowledge of both authors, this is the first time a hierarchical discrete-89

continuum model has been established for embedded strong discontinuities in dual-permeability system90

undergoing large deformation.91

The remainder of this paper is organized as follows. We first explain the kinematics of the dual-porosity,92

dual-permeability system with strong discontinuities. We then explain the various choices of RVE simula-93

tions with different boundary conditions that provide macroscopic hydro-mechanical responses for the94

interfaces. Following the description of the RVE simulations, we then describe the macroscopic finite95

element formulation with embedded discontinuity for dual-permeability systems. The implementation96

techniques are then highlighted, and numerical examples are presented. As for notations and symbols,97

bold-faced letters denote tensors; the symbol ’·’ denotes a single contraction of adjacent indices of two98

tensors (e.g. a · b = aibi or c · d = cijdjk ); the symbol ‘:’ denotes a double contraction of adjacent indices99

of tensor of rank two or higher ( e.g. C : εe = Cijklε
e
kl ); the symbol ‘⊗’ denotes a juxtaposition of two100

vectors (e.g. a ⊗ b = aibj) or two symmetric second order tensors (e.g. (α ⊗ β)ijkl = αijβkl). Moreover,101

(α ⊕ β)ijkl = αjl βik and (α 	 β)ijkl = αil β jk. We also define identity tensors (I)ij = δij, (I4)ijkl = δikδjl ,102

and (I4
sym)ijkl =

1
2 (δikδjl + δilδkj), where δij is the Kronecker delta. As for sign conventions, unless specify103

otherwise, we consider the direction of the tensile stress and dilative pressure as positive.104

2 Problem Statement105

This section provides a brief account of the theoretical basis of the multi-scale coupling model designed106

for a dual-porosity, dual-permeability system with embedded strong discontinuities. While there are pre-107

vious work dedicated to model embedded strong discontinuities of porous media in the small and finite108

deformation ranges (e.g. Steinmann [1999], Larsson and Larsson [2000], Callari and Armero [2004], Mosler109

[2006], Mohammadnejad and Khoei [2013], Sun et al. [2016], Nikolic et al. [2016], de Borst [2016], Prevost110

and Sukumar [2016], de Borst [2017a]), there has not yet been any attempt to introduce bridging-scale111

methods for interfaces composed of dual-porosity, dual-permeability materials. Nor is there any work112

aimed at introducing constitutive responses via discrete-continuum coupling to simultaneously replace113

phenomenological cohesive zone law and anisotropic permeability model for interfaces in the finite de-114

formation range. In this section, we first briefly review the kinematics of the hydro-mechanical interfaces.115
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Following this, a brief description of the boundary value problem for the dual-permeability system in finite116

deformation range and that of the corresponding finite element formulation of interfaces are given.117

2.1 Large-scale dual-permeability hydro-mechanical problem118

Consider a saturated porous medium with highly localized deformation zones (e.g. cracks, faults.) occu-119

pying a spatial domain B ⊂ Rnsd , where nsd =1, 2, or 3 stands for the number of spatial dimensions.120

The boundary of the body in the reference configuration is denoted as ∂B ⊂ Rnsd−1. The porous solid121

is treated as a double-porosity mixture and the two dominant pore scales are the macropores M (in this122

case the pores of fissures, shear bands, cracks) and the micropores m, (micro-pores in the solid matrix). A123

solid skeleton material point at point X of the reference configuration may move due to rigid body motion124

and/or deformation. Here we assume that this material point is defined in a macroscopic sense such that125

the material point is associated with a representative elementary volume whose space is partially occu-126

pied by the solid constituent and the fluid constituent in the macro- and micro-pores. For convenience,127

the microstructural attributes of this representative elementary volume are often neglected and the porous128

medium is therefore regarded as a multiphase effective medium. If no crack growth or healing occurs, the129

location of this material point in the current configuration can be determined via the mapping x = ϕ(X, t).130

The displacement is u(X, t) = x(X, t) − X = ϕ(X, t) − X. The macroscopic deformation of the effective131

medium is therefore characterized by F = ∂ϕ
∂X = ∇X ϕ . The elementary volumes of the total mixture,132

solid, macropores, micropores and void are denoted as dV, dVs, dVM, dVm, dVv = dV − dVs = dVM + dVm,133

respectively. The pore fractions for macropores (ψM) and micropores (ψm) are defined as,134

ψM(X, t) = ψ =
dVM
dVv

, ψm(X, t) = 1− ψ =
dVm

dVv
. (1)

Meanwhile, the volume fractions for solid, macropores and micropores can be expressed as a function of135

porosity and pore fractions, i.e.,136

φ(X, t) =
dVv

dV
,

φs(X, t) =
dVs

dV
= 1− φ,

φM(X, t) =
dVM
dV

= φψ,

φm(X, t) =
dVm

dV
= φ(1− ψ).

(2)

The partial mass densities of each constituent can be determined using the volume fractions and the137

intrinsic mass density of solid ρs and fluid ρ f :138

ρs = φsρs = (1− φ)ρs,

ρM = φMρ f = φψρ f ,

ρm = φmρ f = φ(1− ψ)ρ f .

(3)

The pull-back total mass density of the mixture is given by139

ρ0 = ρs
0 + ρM

0 + ρm
0 = Jρs + JρM + Jρm, (4)

where J = det(F) is the Jacobian of the solid motion.140

Let us denote the (solid) material time derivative following the solid skeleton trajectory as ˙(•) = ∂(•)
∂t +141

∇x(•) · v. Assuming incompressible solid and fluid constituents and no mass exchange between solid and142

fluid [Borja and Choo, 2016]:143

ρ̇M
0 = ˙Jφψρ f = J̇ψρ f + Jφψ̇ρ f = ρ f Jψ∇x· v + ρ f Jφψ̇,

ρ̇m
0 = ˙Jφ(1− ψ)ρ f = J̇(1− ψ)ρ f − Jφψ̇ρ f = ρ f J(1− ψ)∇x· v− ρ f Jφψ̇,

(5)
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using the identities ˙Jφ = J̇ − ˙Jφs = J̇ and J̇ = J∇x· v [Song and Borja, 2014].144

The relative fluid mass fluxes qM, qm, and relative fluid velocities ṽM, ṽm take the form145

qM = ρMṽM = ρ f φψ ṽM = ρ f φψ (vM − v),

qm = ρmṽm = ρ f φ(1− ψ) ṽm = ρ f φ(1− ψ) (vm − v),
(6)

where vM and vm are the fluid velocities in the macropores and micropores, respectively.146

The relative fluid mass fluxes are related to pore pressures via Darcy’s law:147

qM = −ρ f
kM
µ f
· (∇x pM − ρ f g),

qm = −ρ f
km

µ f
· (∇x pm − ρ f g),

(7)

where pM and pm are Cauchy macropore pressure and Cauchy micropore pressure, respectively. kM and148

km are intrinsic permeability tensors for macro-scale pore and micro-scale pore. µ f is the dynamic viscosity149

of the fluid. g is the gravity acceleration vector.150

The pull-back mass fluxes are obtained by Piola transforms151

QM = JF−1 · qM, Qm = JF−1 · qm. (8)

The fluid in macropores can diffuse from or into micropores. The fluid mass transfer between the two152

scales is characterized by the coefficient [Choo et al., 2016]153

c0 = Jc = J
ᾱ

µ f
(pM − pm). (9)

ᾱ is a material parameter for macro-micro-pore interface permeability.154

To construct the strong form of the problem, the boundary ∂B having unit normal N at X ∈ ∂B admits155

the decomposition156 {
∂B = ∂Bu ∪ ∂Bt = ∂BpM ∪ ∂BqM = ∂Bpm ∪ ∂Bqm

∅ = ∂Bu ∩ ∂Bt = ∂BpM ∩ ∂Bqm = ∂BpM ∩ ∂Bqm

, (10)

where ∂Bu, ∂BpM and ∂Bpm are Dirichlet boundaries with prescribed solid displacement, macropore pres-157

sure and micropore pressure, respectively. ∂Bt, ∂BqM and ∂Bqm are Neumann boundaries with prescribed158

tractions, macropore flux and micropore flux, respectively.159

Assuming quasi-static case and incompressible solid and fluid constituent, the Lagrangian strong form160

of the large-scale dual-permeability hydro-mechanical problem reads: find the displacement u : B → Rnsd ,161

the Cauchy macropore pressure pM : B → R and the Cauchy micropore pressure pm : B → R such that the162

balance of linear momentum, the balance of mass in macropores and micropores, the boundary conditions163

are satisfied:164 

∇X ·P + ρ0g = c0(ṽm − ṽM) on B,

ρ̇M
0 +∇X ·QM = −c0 on B,

ρ̇m
0 +∇X ·Qm = c0 on B,

u = û on ∂Bu

P · N = t̂ on ∂Bt ,
pM = p̂M on ∂BpM ,

QM · N = −Q̂M on ∂BqM ,
pm = p̂m on ∂Bpm ,

Qm · N = −Q̂m on ∂Bqm ,

(11)
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where P is the first Piola-Kirchhoff stress and its relation to Kirchhoff stress tensor τ and Cauchy stress σ165

are:166

τ = Jσ = P · FT. (12)

The total Kirchhoff stress tensor permits the following decomposition in terms of effective Kirchhoff167

stress τ′ and Cauchy pore pressures pM and pm, based on the effective stress principle,168

τ = τ′ − Jpavg I = τ′ − J[ψpM + (1− ψ)pm]I. (13)

The initial conditions are imposed as169

u(X) = u0(X), pM(X) = pM0(X), pm(X) = pm0(X) for all X ∈ B at t = t0. (14)

2.2 Kinematics of embedded strong discontinuities in dual-permeability porous media170

Consider a material point X in the dual-permeability porous media B and an associated local neighbor-171

hood BX ⊂ B embedded with strong discontinuity (fracture, shear band, fault, etc.). Denote the surface172

of discontinuity as Γ and the local domain BX is thus divided by Γ into sub-domain pair BX = B+X
⋃B−X .173

The motion of the particles within BX is described by local displacement field uΓ = xΓ − X = ϕΓ(X)− X.174

Assume the following relation to the large-scale (or conformal) displacement field u,175

uΓ = u + JuK(HΓ − fΓ), (15)

where JuK is the displacement jump across the interface Γ, HΓ is the Heaviside step function across Γ and176

fΓ is a smooth ramp function in BX [Borja, 2002]. It is also useful to define the continuous part ū of motion177

uΓ as178

u = u− JuK fΓ. (16)

The large-scale (or conformal) and continuous deformation gradients are defined as,179

F = I +∇X u, F = I +∇X u. (17)

The local deformation gradient is given by, assuming relative uniformity of JuK along Γ such that180

∇X JuK→ 0 in BX ,181

FΓ = I +∇X uΓ

= F − JuK⊗∇X fΓ + (JuK⊗N)δΓ

= F + (JuK⊗N)δΓ,

(18)

where the equation ∇X HΓ = δΓN is employed. δΓ is the Dirac delta function across Γ and N is the unit182

normal of Γ pointing from B−X to B+X .183

From Eq. 18, following Armero and Garikipati [1996], Callari and Armero [2004], Armero and Linder184

[2008], the local deformation gradient allows a multiplicative decomposition into two parts:185

FΓ = F · F̃ = F · (I + (JUK⊗N)δΓ) (19)

where JUK = F−1 · JuK is the material displacement jump across Γ.186

The presence of displacement jump in the solid phase results in the discontinuity of the fluid flux across187

the interface. The localized fluid flow model developed by [Callari and Armero, 2002, 2004] states that the188

fluid flux vector field QΓ in the local neighborhood BX is composed of a regular flow field Q and a local189

flux jump JQK:190

QΓ = Q + JQK(HΓ − fΓ). (20)

The same ramp function fΓ as in the displacement field is employed, but a different ramp function can also191

be chosen. The rate of local fluid content MΓ (fluid mass increment per unit reference volume of porous192

solid) is thus obtained by193

ṀΓ = −∇X ·QΓ = −∇X ·Q + JQK · ∇X fΓ − (JQK · N)δΓ, (21)
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with the assumption of ∇X ·JQK → 0 in BX . In this model, the mass flux could be discontinuous across194

the interface, while the pressure field remains continuous. This assumption is justified by the experimental195

findings that in ordinary soil mechanics testing situations or for quasi-static loading conditions, no pore-196

water pressure shocks can develop across shear band boundaries [Vardoulakis, 1996]. The assumption197

is also a necessary condition for the existence of second order derivative of pore pressures as shown in198

Equations (7), (21). This assumption allows for storage and fluid flow within the discontinuity, but the199

interface permeability must be infinitely large. Moreover, since there is no independent pressure inside the200

interface, the model also lacks the capability to simulate the pressurized crack [de Borst, 2017b].201

To circumvent this issue described in de Borst [2017b], we introduce a simplified effective-medium202

approach in which pores inside the major fault (strong discontinuity), the nearby net of fissures and the203

intact host continuum are idealized as two porous systems of distinct pore sizes. The pore spaces inside204

the strong discontinuities and fissures constitute the macropore system, whereas the pore spaces inside205

the intact continuum are considered as the micropore system. Those porous systems may exchange fluid206

mass. Assuming that the separation of scales applies and there exists an appropriate length scale such207

that the fissured porous media can be treated as the superimposition of three continua, the solid skeleton,208

the macro-fluid continuum and the micro-fluid continuum at the representative elementary volume level.209

Then the pore pressure and fluid flux of each pore system could be distinctive until both porous systems210

reach steady state. In this treatment, the detailed fluctuation of the micro- and macro-pore fluid flow be-211

low the scale of the RVE is ignored. Nevertheless, this treatment also enables us to capture the transient212

fluid responses across distinct time and spatial scales. This capacity is particularly important to deal with213

dual-permeability media with significant permeability differences and/or when the mass exchange is slow214

compared to the flux in either porous system (e.g. the pressurized crack).215

Assuming that the homogenization procedure is valid even if an embedded strong discontinuity exists,216

then the pore pressure and flux fields can be defined at the macroscopic continuum scale such that pM217

and QM are the macroscopic macropore pressure and flux of the effective porous system that represents218

all the macropore space inside the net of fissures and the major fault. Meanwhile, pm and Qm are the219

pressure and flux of the effective porous system that represents the micropore space inside the intact solid220

skeleton. Furthermore, the transfer flow at the continuum scale can be idealized as the flow between the221

effective porous system that represents the pore space inside intact solid skeleton and the counterpart that222

simultaneously represents both the pore space of the fault and the fissures.223

pM, pm and QM, Qm are continuous fields obtained from separate balance equations of fluid mass in224

both pore-scales, interconnected by the fluid mass transfer c0 between the two pores (Eq. 11). For finite225

elements with embedded strong discontinuity, standard integrations are employed for all pressure and226

fluid flow in macropores and micropores. Note that this treatment employed in the proposed framework227

is not the only feasible approach. In the case where sub-scale fluctuations of pore pressure and flux are228

important, one may consider the localized fluid flux formulation previously established in Callari and229

Armero [2004].230

2.3 Condition of traction continuity231

The solution of the local displacement jump field JuK requires a traction continuity equation relating the232

nominal stress field P in BX \ Γ and the nominal traction TΓ in Γ driving the mechanical inelastic effects233

inside the strong discontinuity. The weak form writes, for all variations δ JuK, [Armero, 1999]234

− 1
VBX

∫
BX

δ JuK ·PN dV +
1

LΓ

∫
Γ

δ JuK ·TΓ dΓ = 0, (22)

where VBX = measure(BX) and LΓ = measure(Γ). Since the fluid pressure in both pore-scales are contin-235

uous across the strong discontinuity, JpMK = 0, JpmK = 0, Eq. 22 can be written in terms of effective stress236

and traction:237

− 1
VBX

∫
BX

δ JuK ·P′N dV +
1

LΓ

∫
Γ

δ JuK ·T ′Γ dΓ = 0. (23)
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In the limit
VBX
LΓ
→ 0, the local equilibrium equation writes:238

T ′Γ = (P′ · N)|Γ. (24)

The effective stress measure P′ in the host continuum just outside the strong discontinuity is deter-239

mined by the continuous part of the total deformation gradient, i.e., P′ = P′(F) = P′(F, JuK). The effective240

traction measure is given by the displacement jump, i.e., T ′Γ = T ′Γ(JuK). These two constitutive laws for the241

host continuum and for the fracture are presented in the subsequent section.242

2.4 Constitutive equations243

Inelastic dissipation mainly occurs inside the strong discontinuities of a solid body under external loading,244

while the host matrix outside these localized zones remains intact. Thus, to reduce computational cost,245

the multi-scale approach is only adopted in the vicinity of strong discontinuities, and we assume a Neo-246

Hookean hyperelastic constitutive model is sufficient to replicate the constitutive responses of the host247

matrix. For a RVE associated with a material point undergoing a deformation characterized by the Left248

Cauchy-Green deformation tensor b = F · FT = F · FT , the effective Kirchhoff stress is given by [Belytschko249

et al., 2013],250

τ′ = λ0 ln J I + µ0(b− I), (25)

where λ0 and µ0 are the Lamé constants from linear elasticity.251

The spatial elasticity tensor Ce is given by252

Ce = λ0 I ⊗ I + 2(µ0 − λ0 ln J)I4
sym. (26)

Ce relates the Lie derivative of the effective stress tensor to the velocity gradient, i.e., Lvτ′ = Ce : d =253

Ce : 1
2 (∇x v + v∇x) = Ce : ∇x v, after noting the minor symmetry of Ce. Then the spatial tensor αe with254

respect to the rate of τ′ is given by255

τ̇′ = αe : ∇x v, αe = Ce + τ′ ⊕ I + τ′ 	 I. (27)

The material parameters for the model can be determined by numerical experiments on an initial micro-256

scale representative volume element (RVE) composed of discrete particles: a uniaxial tension/compression257

test to get the P-wave modulus M and a simple shear test to get the shear modulus G. Then λ0 = M− 2G258

and µ0 = G.259

As for the traction-separation relation T ′Γ = T ′Γ(JuK) for the strong discontinuity, it is homogenized260

from the micro-scale RVE, and the approach is detailed in the subsequent section.261

The material properties for the dual-porosity hydraulic model are obtained as follows. The perme-262

ability tensor kM in macropores (fractures) in Eq. (7) is given by machine learning model trained with263

permeability data from Lattice-Boltzmann simulation on micro-scale RVE, as explained in Section 3. Since264

the microscale RVE only represents the medium inside the strong discontinuity, the hydraulic properties265

for the host medium and mass transfer between the two media remain updated from phenomenological266

laws. The permeability tensor km in micropores (host matrix) is assumed isotropic and its evolution against267

the micro-porosity follows the Kozeny–Carman relation,268

km = km I, km = km0
φ3

m/(1− φm)2

φm
3
0/(1− φm0)

2
, (28)

where km0 is the initial permeability for the solid matrix having initial micro-porosity of φm0. The pore269

fraction ψ for macropores (the ratio between the pore volumes of fissures and the total porous contin-270

uum) is assumed to be constant during the deformation of the continuum. Thus the current value of271

macroporosity is obtained as, assuming incompressible solid phase, φM = ψφ = ψ[1− (1− φ0)J−1], and272

φm = (1− ψ)φ = (1− ψ)[1− (1− φ0)J−1].273

The mass transfer coefficient ᾱ in Eq. (9) is a dimensionless parameter that depends on the permeability274

of the interface between macropores and micropores k̄, as well as characteristic length of the macropores275



Assumed-strain DEM-FEM poromechanics 9

spacing and solid matrix geometry [Callari and Federico, 2000, Choo and Borja, 2015, Borja and Choo,276

2016]. The interface permeability k̄ is assumed to equal to the micropore permeability km, following the277

same assumption as Lewandowska et al. [2004], Choo and Borja [2015]. If the effect of the geometry of278

the strong discontinuity is considered in the mass transfer term, ᾱ should become a tensor ᾱ instead of a279

scalar to take into account the preferential mass transfer direction normal to the interface, in addition to280

the assumed isotropic mass transfer between the net of fissure and the micropore space. Hence Equation281

(9) is modified to a tensor form,282

c0 = Jc =
J

3µ f
ᾱ : (pM I − pm I). (29)

where ᾱ is now a homogenized mass transfer coefficient tensor including the structural information of the283

interfaces between macropores and micropores. A simple form of ᾱ can be defined as284

ᾱ =
dVf issure

dVM
ᾱI +

dVSD
dVM

ᾱn⊗ n, (30)

where dVf issure and dVSD are elementary volumes of the net of fissures and the strong discontinuity in the285

macropore space dVM, respectively.286

3 Computational homogenization for strong discontinuity287

Here we present the procedure to obtain the hydro-mechanical constitutive updates for embedded strong288

discontinuity from microscale simulations on RVEs nested inside the material interfaces. The computa-289

tional homogenization schemes of single-physics material layers have been explored in a number of pre-290

vious studies [Hirschberger et al., 2009, Coenen et al., 2012, Bosco et al., 2014, Wang and Sun, 2018]. For291

instance, Hirschberger et al. [2009] have introduced a procedure to generate an effective cohesive zone law292

for a single interface from microscale RVE. In those studies, FE2 simulations with interface elements are293

used as the test bed. Coenen et al. [2012], Bosco et al. [2014] establish a multi-scale approach for RVE (or294

Microstructural Volume Element as introduced in the literature) having localized zones and proposed a295

new generalized periodic boundary condition. The overall macro-homogeneous deformation is applied to296

the MVE and the stress and displacement jump are homogenized. The local equation to be solved is the297

consistency between the macro displacement jump and the homogenized displacement jump in the RVE,298

instead of the traction continuity equation. Toro et al. [2014, 2016] proposed multiscale model at regular299

points (MMRp) and singular points (MMSp). It has been successfully used in enhanced strain finite element300

simulations [Oliver et al., 2015]. In this study, the RVEs of discrete elements describe the underlying mi-301

crostructures inside the discontinuity interface. Based on the effective stress principle, the mechanical and302

hydraulic constitutive laws are obtained separately from two types microscale simulations, i.e. the grain-303

scale DEM simulation and the pore-scale LBM simulation, as explained in Sun et al. [2013] and Wang and304

Sun [2016a]. In other words, the effective traction and the interfacial permeability (and hence the interfa-305

cial Darcy’s velocity) are both obtained from the same deformed configuration. However, the deformed306

configuration is not obtained from LBM-DEM simulations but from DEM simulations that generate the307

admissible boundary conditions by assuming the validity of the effective stress principle. The major ad-308

vantage of this approach is two-fold. First, the calculations of the interfacial permeability are much faster.309

This is due to the fact that the de-coupled permeability calculation can be conducted offline such that the310

trained and validated neural network can be used to replace the costly LB simulations). The second ad-311

vantage is the simplicity. As the effective stress approach does not require the introduction of particle-scale312

hydro-mechanical force and any treatment to update the fluid-solid boundary at pore scale. Nevertheless,313

it should be noted that the validity of this split approach is designed for the case in which the effective314

stress principle is applicable for the dual-permeability system. In many situations that involve particle315

erosion [Galindo-Torres et al., 2015, Tran et al., 2017], soil liquefaction [El Shamy and Abdelhamid, 2014],316

or solid-fluid mixture with non-Darcy flow or high Reynold’s number, such a simplification may lead to317

significant errors. In such cases, one must derive the corresponding Hill-Mandel condition for the multi-318

physical poromechanics problems to obtain the admissible boundary conditions and apply them to the319

DEM-LBM model or use direct numerical simulation (DNS) to capture the multi-physical problems. Such320

an extension will be considered in the future study but is out of the scope of this work.321



10 Kun Wang, WaiChing Sun

The Hill-Mandel condition and the corresponding computational homogenization procedure that cal-322

culates the homogenized effective traction and interfacial permeability measures in the finite deformation323

enhanced strain formulation are detailed in the following sub-sections.324

3.1 Online incremental homogenized mechanical responses for strong discontinuities325

The homogenization procedure of mechanical constitutive law is an extension of the approach described in326

[Hirschberger et al., 2009] to particle assembly using the theory in [Miehe and Dettmar, 2004, Miehe et al.,327

2010]. Consider a cubic assembly of discrete particles representing the granular material inside the strong328

discontinuity (Fig. 2). The body force is negligible at micro-scale. This RVE of domain Ωµ and boundary329

∂Ωµ has an initial height of h0
µ and is associated with a coordinate system with basis vectors Mµ and Nµ.330

Choose the geometric center as the origin and place the RVE in alignment with the normal and tangential331

directions of the strong discontinuity Γ in the reference configuration (Nµ = N, Mµ = M). The current332

position xc
µ of a center of a particle is related to its position Xc

µ in the reference configuration via the333

deformation map ϕµ. The local deformation gradient Fµ =
δϕµ

δXc
µ

. The volume average of Fµ is given as:334

〈Fµ〉 =
1

V0

∫
Ωµ

Fµ dΩµ =
1

V0

Nbound

∑
i

(xc
µ)i ⊗ Ac

i , (31)

where V0 is the initial volume of the RVE. Ac
i is the surface vector of ∂Ωµ associated with the particle i and335

Nbound is the number of particles on ∂Ωµ. Assuming rigid particles, the motion of a particle material point336

can be decomposed to the motion of the particle center and the particle rotation, i.e.,337

xµ = xc
µ + Rµ · (Xµ − Xc

µ); xc
µ = 〈Fµ〉 · Xc

µ + wc, (32)

where wc is the particle center displacement fluctuation and Rµ ∈ SO(3) describes the particle rotation.338

The overall effective Piola stress is given by the volume average339

〈P′µ〉 =
1

V0

∫
Ωµ

P′µ dΩµ =
1

V0

Ncont

∑
cont

f cont
µ ⊗ Lcont

µ =
1

V0

Nbound

∑
i

( f ext
µ )i ⊗ (Xc

µ)i, (33)

where f cont
µ is the contact force at the grain contact xcont

µ . Lcont
µ is the initial branch vector, the vector that340

connects the centroids of two grains forming the contact. Ncont is the total number of particles contacts in341

the RVE. ( f ext
µ )i is the external support force acting on the boundary particle i. The transition between the342

summation involving contact forces and the summation involving external support forces is ensured by343

the equilibrium of the RVE of particles.344

The volume average of the virtual power in the RVE is given by345

〈P′µ : Ḟµ〉 =
1

V0

∫
Ωµ

P′µ : Ḟµ dΩµ =
1

V0

Nbound

∑
i

( f ext
µ )i · ˙(xc

µ)i. (34)

The Hill-Mandel micro-heterogeneity condition requires the volume average of the virtual power in the346

RVE to equal the virtual power done by the volume averages of power-conjugate stress and deformation347

measures:348

〈P′µ : Ḟµ〉 = 〈P′µ〉 : 〈Ḟµ〉. (35)

Since the constitutive behavior of the RVE is homogenized to a traction-separation law on the inter-349

face, the Hill-Mandel condition is recast into the form involving power-conjugate effective traction and350

displacement jump measures351

h0〈P′µ : Ḟµ〉 = 〈T ′Γ〉 ·Lv JuK = 〈T Γ〉 · ˙JUK. (36)
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For the transition between the macro-scale kinematics of the strong discontinuity and the deformation352

of the micro-scale RVE, the volume average of deformation gradient is defined as353

〈Fµ〉 = I +
1

h0
µ

JuK⊗N. (37)

The effective nominal traction 〈T ′Γ〉 averaged in the RVE representing the interface is given by:354

〈T ′Γ〉 = 〈P′µ〉 · N. (38)

Among the admissible boundary conditions fulfilling the Hill-Mandel micro-heterogeneity condition,355

we adopt the periodic boundary conditions, where for a pair of particles on opposite boundaries ∂V+ and356

∂V−, the periodicity enforces the periodicity of fluctuations and rotations357

w−c = w+
c , R−µ = R+

µ , (39)

and the anti-periodicity of support forces and couples358

a−c = −a+
c , m−c = −m+

c , (40)

where ac is the opposite of the resultant force on the boundary particle exerted by other particles, mc is the359

opposite of the resultant couple about the center Xc on the boundary particle.360

3.2 Offline incremental data-driven hydraulic responses for strong discontinuities361

The homogenization procedure used to obtain the effective permeability from a microstructure RVE has362

been previously studied in Du and Ostoja-Starzewski [2006], Ostoja-Starzewski et al. [2007], Sun et al.363

[2011a, 2013]. Here we apply the same procedure to obtain the homogenized effective permeability of the364

embedded strong discontinuities. Assume that the separation of the spatial length scale is valid, one may365

use the Hill-Mandel lemma corresponding to Darcy’s flow problem to determine the admissible boundary366

condition for the flow problems. Recall that the Hill-Mandel lemma requires that367

〈∇x pM · qM〉x = 〈∇x pM〉x · 〈qM〉x (41)

where 〈·〉x is the spatial volume averaged operator.368

As shown in Du and Ostoja-Starzewski [2006] and Ostoja-Starzewski et al. [2007], this can lead to a369

number of admissible boundary conditions. For instance, one may either prescribe flux or pore pressure370

gradient in two opposite faces of the RVEs. One interesting aspect found in previous works (cf. Du and371

Ostoja-Starzewski [2006], Sun et al. [2011a, 2013], Kuhn et al. [2015]) is that the choice of the boundary con-372

dition does not affect the effective permeability once the size of the RVE is sufficiently large. As mentioned373

previously in Section 2.2, we follow the treatment in de Borst [2017b] and assume that there is no pore374

pressure jump across the interface, whereas discontinuous mass flux is admissible.375

The effective permeability tensor of a RVE can be determined via inverse fluid flow problem performed376

on the deformed RVE subjected to prescribed loading paths. The Eulerian fluid flux vector q within the RVE377

is computed when subjected to Eulerian pressure gradient∇x p, and the macro-pore effective permeability378

kM
RVE is determined by Darcy’s law379

qM = − 1
µ

kM
RVE∇x pM. (42)

µ is the dynamic viscosity of the fluid. We assume that the normal and tangential directions of the interface380

are also the principal directions of the macro-pore effective permeability tensors. Thus, we need only two381

hydraulic simulations to determine the permeability values normal and tangential to the interface, denoted382

as kM
n and kM

m , respectively. Thus the permeability tensor is expressed as383

kM
RVE = kM

n n⊗ n + kM
m m⊗m, (43)
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where n = F · N and m = F−T · M. We choose the lattice Boltzmann (LB) method to solve the inverse384

fluid flow problem. For brevity, we omit the description of the LB method. Interested readers are referred385

to Sun et al. [2011b, 2013] and Kuhn et al. [2015] for details. The LB code used in this study is a C++ open386

source code called Palabos [Degruyter et al., 2010]. The procedure to obtain the two normal and tangential387

components is as follows. We first record the positions of all grains in the deformed microstructural assem-388

bly at different strain levels. As the size of each grain is known, the configuration of the pore space can be389

reconstructed and subsequently converted into binary images (cf. Sun et al. [2013]). Then, pore pressure390

difference is imposed on two opposite sides orthogonal to the flow direction and no-flow boundary con-391

ditions are applied on the four remaining side faces. This setting leads to a macroscopic pressure gradient.392

As the lattice Boltzmann flow simulation reaches steady state, the resultant fluid flow velocity is computed393

and the permeability value is derived via Darcy’s law (Fig. 2). Fig. 5 illustrates an example computation394

of permeabilities from LBM. The RVE is subjected to various displacement loading paths with loading-395

unloading cycles. The evolution of normal and tangential permeabilities predicted by the neural network396

are presented and are compared to the empirical Kozeny-Carman equation.

Fig. 2: Initial and deformed configurations of the particle assembly representing the granular materials
inside strong discontinuity. The effective permeabilities in the normal and tangential directions are deter-
mined by Lattice-Boltzmann simulations on representative volume of current particle assembly.

397

The numerical solutions of Stokes equations using Lattice-Boltzmann method yield accurate results,398

especially in the low Reynold number regime, but require significant computational resources to resolve399

the flow field at pore space. To achieve a reasonable accuracy, the number of degree of freedoms required400

to obtain the effective permeability is at least a few orders more than those used in discrete element simu-401

lations [Sun et al., 2013] Thus, querying the effective permeability tensor from LBM simulations from each402

RVE for all incremental steps during a multiscale simulation is computationally expensive. In this work,403

we resort to a deep learning approach to predict the effective permeability for each incremental step. The404

design, training, and testing of the LSTM network on path-dependent material constitutive laws are de-405

tailed in a separate and dedicated work (cf. Wang and Sun [2018]). For completeness, a brief overview is406

provided.407

First, a database containing the prescribed displacement jump loading paths, porosity and associated408

computed permeabilities is established by running multiple LBM simulations on deformed discrete ele-409

ment RVEs. Then, a recurrent neural network consisting of Long-Short-Term-Memory (LSTM) layers (see410

Figure 3) is trained using the database generated by LBM simulations [Hochreiter and Schmidhuber, 1997,411

Wang and Sun, 2017a]. In a nutshell, the training process attempts to minimize an objective function by ad-412

justing the weights of each neuron in the layers through a back-propagation process. The LSTM approach413

is different than the traditional feed-forward neural network proposed by Ghaboussi et al. [1998] and Lefik414

and Schrefler [2002] in the sense that (1) the LSTM neuron (see Figure 4) has the capacity to use internal415

memory to process history and sequence and hence ideal for predictions for path-dependent materials, (2)416
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Fig. 3: The recurrent neural network used to predict the permeability of the interface.

the LSTM networks are designed to avoid a problem called vanishing or exploding gradient problems that417

may otherwise lead to issues during the training process.418

Fig. 4: A LSTM block with input, output and forget gates.

Finally, in each incremental update of the multiscale strong discontinuity simulation, the updated effec-419

tive permeability components are generated by propagating signals from the input layer of the recurrent420

neural network to the output layers. In this particular case, the current displacement jumps and porosity421

are used as the input and the principal values and the spectral directions of the effective permeability tensor422

are the output of the recurrent neural network. One important upshot of this approach is that the querying423

time is largely reduced, as the deep learning permeability model typically requires only few seconds to424

make predictions.425

Remarks on the computation time Each LBM simulation for determining the permeability of a DEM426

assembly costs a CPU time of 5 minutes. If the LBM simulation is used online with the FEM-DEM simula-427

tion, suppose there exist 10 000 integration points in a finite element mesh, for each iteration within each428

time step, the total CPU time spent in updating the permeability will be 50 000 minutes. If the data-driven429

approach is adopted, the LBM simulations are conducted offline to generate the database for the perme-430
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(a) Displacement jump loading path (b) Evolution of permeabilities along loading path

Fig. 5: Example of permeability data generated from LBM simulations on RVEs undergoing loading-
unloading sequences. (a) loading path of the normal Un and tangential displacement jumps Us. (b) Com-
parison between the normal kn and tangential ks permeability data from LBM simulations and the per-
meability components from predictions of LSTM neural network model. The calculation from empirical

Kozeny-Carman equation k =
d2

50
180

φ3

(1−φ)2 (d50 = 1mm) is shown for comparison.

ability of DEM assembly. The total CPU time is 5 000 minutes, when the overall size of the training and431

testing data is 1 000. The training and testing of a LSTM neural network model is 250 minutes. The CPU432

time for a LSTM neural network to predict permeability online with the FEM-DEM simulation is less than433

1 minute for 10 000 integration points. Suppose a simulation consists of 100 time steps and each time step434

requires on average 10 iterations to converge. The comparison of CPU time spent on permeability calcu-435

lation between the online approach and the data-driven approach is 50 000 000 (5 000 * 100 * 10) minutes436

against 6 250 (5 000 + 250 + 1*100*10) minutes. This justifies the advantage of artificial neural network over437

the online LBM simulations in saving the computation time.438

4 Finite Element Implementation439

The finite element formulation for porous continua with double porosity is detailed in Borja and Choo440

[2016]. This section presents the formulation for double-pore porous media incorporating assumed en-441

hanced strain, following the Petrov-Galerkin multiscale formulation developed in [Borja, 2002, 2008] and442

the formulation for strong discontinuities in coupled porous media developed in [Callari and Armero,443

2004]. In this work, constant strain triangle (CST) element is adopted, which simplifies the incorporation of444

the assumed enhanced strain (AES) in the finite element formulation. The displacement, macro- and micro-445

pressure fields are interpolated using the same linear shape functions. This type of low-order mixed finite446

element does not satisfy the inf-sup condition and can lead to pressure oscillations under undrained con-447

ditions. The pressure projection stabilization scheme is employed, as detailed in [Choo and Borja, 2015],448

although the weak forms presented herein do not contain these stabilization terms for brevity. Based449

on an alternative implementation of the AES modeling of strong discontinuity at finite strain [Mosler,450

2006], we propose a novel framework that can conveniently and directly utilize the traction-separation law451

T ′Γ = T ′Γ(JuK) homogenized from micro-scale RVEs.452
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4.1 Weak form453

Define the trial spaces of displacement, Cauchy macropore pressure and Cauchy micropore pressure as454

Su = {u : B → Rnsd | u ∈ H1, u|∂Bu = û},
SpM = {pM : B → R| pM ∈ H1, pM|∂BpM

= p̂M},

Spm = {pm : B → R| pm ∈ H1, pm|∂Bpm
= p̂m},

(44)

and the corresponding admissible spaces of variations as455

Vη = {η : B → Rnsd | η ∈ H1, η|∂Bu = 0},
VζM = {ζM : B → R| ζM ∈ H1, ζM|∂BpM

= 0},

Vζm = {ζm : B → R| ζm ∈ H1, ζm|∂Bpm
= 0},

(45)

where H1 denotes the Sobolev space of functions of order one.456

The variational form of the large-scale problem is constructed as: find u ∈ Su, pM ∈ SpM and pm ∈ Spm457

such that for all η ∈ Vη , ζM ∈ VζM and ζm ∈ Vζm458

G : Su × SpM × Spm × Vη → R

G(u, pM, pm, η) =
∫
B
∇X η : P dV −

∫
B

η · ρ0g dV +
∫
B

η · c0(ṽm − ṽM) dV −
∫

∂Bt
η · t̂ dA = 0 (46)

459

HpM : Su × SpM × Spm × VζM → R

HpM (u, pM, pm, ζM) =
∫
B

ζM ρ̇M
0 dV −

∫
B
∇X ζM ·QM dV +

∫
B

ζM c0 dV −
∫

∂BqM

ζM Q̂M dA = 0 (47)

460

Hpm : Su × SpM × Spm × Vζm → R

Hpm (u, pM, pm, ζm) =
∫
B

ζm ρ̇m
0 dV −

∫
B
∇X ζm ·Qm dV −

∫
B

ζm c0 dV −
∫

∂Bqm

ζm Q̂m dA = 0 (48)

Applying the effective stress principle Eq. (13), the internal virtual work term in Eq. (46) can be written461

in spatial form as,462 ∫
B
∇X η : P dV =

∫
B
∇X η : τ · F−T dV

=
∫
B
∇x η : τ dV

=
∫
B
∇x η : (τ′ − Jpavg I) dV,

(49)

where ∇x η = ∂η/∂x and J = det(F).463

Combining the equations (7), (8), (49) and using the backward Euler implicit scheme of step size ∆t =464

tn+1 − tn, the time-integrated spatial form of the variational equations (46), (47), (48) become465

G(u, pM, pm, η) =
∫
B
∇x η : τ′ dV︸ ︷︷ ︸

g1

−
∫
B
∇x· η Jpavg dV︸ ︷︷ ︸

g2

−
∫
B

η · ρ0g dV︸ ︷︷ ︸
g3

+
∫
B

η · c0(ṽm − ṽM) dV︸ ︷︷ ︸
g4

−
∫

∂Bt
η · t̂ dA︸ ︷︷ ︸
gext

= 0
(50)
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H∆t
pM

(u, pM, pm, ζM) =
∫
B

ζM (ρM
0 − ρM

0n
) dV︸ ︷︷ ︸

hM
1

+∆t ρ f

∫
B
∇x ζM · J

kM
µ f
· (∇x pM − ρ f g) dV︸ ︷︷ ︸

hM
2

+∆t
∫
B

ζM c0 dV︸ ︷︷ ︸
hM

3

−∆t
∫

∂BqM

ζM Q̂M dA︸ ︷︷ ︸
hM

ext

= 0

(51)

H∆t
pm (u, pM, pm, ζm) =

∫
B

ζm (ρm
0 − ρm

0n
) dV︸ ︷︷ ︸

hm
1

+∆t ρ f

∫
B
∇x ζm · J

km

µ f
· (∇x pm − ρ f g) dV︸ ︷︷ ︸

hm
2

−∆t
∫
B

ζm c0 dV︸ ︷︷ ︸
hm

3

−∆t
∫

∂Bqm

ζm Q̂m dA︸ ︷︷ ︸
hm

ext

= 0

(52)

4.2 Traction continuity in assumed enhanced constant strain triangle element466

For an AES CST element Be
X adopted in the simulations, the stress P′, normal N and traction T ′Γ are uniform467

inside the element. Thus the local equilibrium equation (24) holds in Be
X as the residual form:468

r = P′(F) · N − T ′Γ(JuK) = 0 (53)

The variation of the residual writes469

δr = δ(τ′ · F−T · N)− δT ′Γ

= (δτ′ · F−T
+ τ′ · δF−T

) · N − δT ′Γ.
(54)

Recall the linearization of τ′ as, if the host continuum assumes a hyperelastic constitutive law,470

δτ′ = αe : ∇x δu, (55)

and the linearization of F−1 as471

δF−1
= −F−1 · ∇x δu, (56)

and that472

∇x δu = δF · F−1, (57)
473

∇x δu = δF · F−1. (58)

Inserting Eq. (55), (56) and (57) into Eq. (54),474

δr = (αe : ∇x δu · F−T − τ′ · (∇x δu)T · F−T
) · N − δT ′Γ

= (αe − τ′ 	 I) : (δF · F−1
) · F−T · N − δT ′Γ

⇒ δri = (αe − τ′ 	 I)ijkl(I4)kmnpF−1
ml F−1

qj Nq︸ ︷︷ ︸
Ainp

δFnp − δT′Γ i

⇒ δr = A : δF − δT ′Γ.

(59)
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From Eq. 18, the linearization of F is given by:475

δF = δF − δ JuK⊗∇X fS
= δF −T · δ JuK,

(60)

with T defined as (T)ijk = δik(∇X fS )j.476

In the local solution of the traction continuity equation (53), the conformal deformation gradient F is477

predetermined by the solution of the equilibrium equations of the large-scale problem, thus δF = 0, and478

then the Jacobian to be used in the local iterative solution is given by479

δr = (−A : T− ∂T ′Γ
∂ JuK

)︸ ︷︷ ︸
D

·δ JuK .
(61)

At the converged state of local equilibrium equation (53), δr = 0, thus, combining Eq. (59) and (60),480

δr = A : δF +D · δ JuK = 0

⇒ δ JuK = −D−1 ·A : δF.
(62)

For Petrov-Galerkin finite element formulation involving AES, the gradient of the variation function is481

evaluated over the continuous part of the deformation map, whereas the gradient of the trial function is482

evaluated over the conforming part of the deformation map. According to Eq. (57), (58), (60) and (62), we483

establish the relationships between these two gradients484

∇x δu = (δF −T · δ JuK) · F−1

= (I4 + T ·D−1 ·A) : δF · F−1

= (I4 + T ·D−1 ·A) : (∇x δu · F) · F−1

⇒ (∇x δu)ij = [(I4)impq + (T)imr(D
−1)rs(A)spq](I4)pqkl FmnF−1

nj︸ ︷︷ ︸
Aijkl

(∇x δu)kl

⇒ ∇x δu = A : ∇x δu.

(63)

4.3 Consistent linearization of the finite strain AES double-porosity formulation485

Due to the diffusion-deformation coupling and the coupling between the pore-fluid diffusion in the macro-486

pores and the micro-pores, an unconditionally stable time integration algorithm is used to numerically487

solve the multiscale problem. As a result, a consistent tangent is needed for obtaining the numerical solu-488

tion via iterative methods. In this derivation, we assumed that a monolithic solver is used and there is no489

operator split applied. Previous work such as Wollny et al. [2017] has explored the usage of split operator490

for finite strain poromechanics based on the relevant work on the small strain counterparts (e.g. Armero491

and Callari [1999], Kim et al. [2011], Mikelić and Wheeler [2013]. As explained in Wollny et al. [2017], the492

expression of the tangential operator for the operator-split algorithm would be different, depending on493

which term(s) is frozen for each split step. Comparisons between the monolithic and operator-split ap-494

proach is out of the scope of the current study but will be considered in the future.495

For the linearization of the weak form of the linear momentum conservation equation (50), since the496

terms g1 and g2 involve both continuous and conformal deformation, equations in the previous subsection497

on local traction continuity are employed. Using Eq. (55), (56), (63) and identities δ∇x η = −∇x η · ∇x δu,498

δJ = J∇x· δu,499

δg1 =
∫
B
∇x η : (αe − τ′ 	 I) : ∇x δu dV

=
∫
B
∇x η : [(αe − τ′ 	 I) : A ] : ∇x δu dV,

(64)
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δg2 =−
∫
B

δ(∇x· η) J pavg dV −
∫
B
∇x· η δJ pavg dV −

∫
B
∇x· η J δpavg dV

=+
∫
B
∇x η : [J pavg (I 	 I) : A ] : ∇x δu dV

−
∫
B
∇x η : [J pavg (I ⊗ I) : A ] : ∇x δu dV

−
∫
B
∇x· η J [(pM − pm)

∂ψ

∂u
δu + ψ δpM + (1− ψ) δpm] dV

(65)

The linearizations of the remaining terms of the weak forms (50), (51), (52) are identical to the large-500

scale double-porosity problem without AES, as they only involve conformal deformation. The formulae501

are grouped in Appendix A.502

5 Numerical Examples503

5.1 Mixed-mode shear tests on porous media with pre-existing interfaces504

The proposed hydro-mechanical AES-DEM framework can model complex path-dependent interface be-505

havior inside pre-existing fractures. This is illustrated in this section via mixed-mode shear tests on porous506

media specimen with embedded strong discontinuity (Fig. 6). The sample is 0.1 m x 0.1 m in dimension.507

The bottom edge is fixed, while the top edge moves rigidly along prescribed displacement path. The sam-508

ple is assumed periodic in the horizontal direction, thus periodic displacement boundary condition is ap-509

plied on the lateral edges. Water pressure in both macropores and micropores on the top and bottom edges510

are set to zero, representing drained surfaces. Two types of interface geometry are tested in this example.511

One is a horizontal straight line in the center and another is a sinusoid with the spatial period of 0.05 m512

and amplitude of 0.005 m. The sinusoidal shape mimics a rough surface in-between a bulk material.513

(a) Embedded interface of straight line (b) Embedded interface of sinusoidal line

Fig. 6: Geometry of fractured specimen and boundary conditions.

The mechanical and permeability properties of the interfaces are homogenized from the discrete ele-514

ment samples. The cohesive-frictional material for rock in YADE is adopted [Scholtès and Donzé, 2012,515

2013]. The bulk material is idealized as isotropic hyperelastic material. The permeability tensors in macro-516
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Scale & Model Location Parameter Value

Grain-scale DEM micro-discontinuities Particle Young’s modulus E 0.1 GPa
Grain-scale DEM micro-discontinuities Particle Poisson’s ratio ν 0.35
Grain-scale DEM micro-discontinuities Particle Friction Angle ϕ π

6
Grain-scale DEM micro-discontinuities Particle density 2600 kg/m3

Grain-scale DEM micro-discontinuities Particle mean diameter 5 mm
Grain-scale DEM micro-discontinuities Tensile strength T 5 MPa
Grain-scale DEM micro-discontinuities Local Cohesion C 5 MPa
Grain-scale DEM micro-discontinuities Interaction range γint 1.6
Grain-scale DEM micro-discontinuities Confining pressure 0 Pa

Grain-scale DEM-LBM micro-discontinuities Initial intrinsic permeability 9e−10 m2

Macro-scale FEM macro-scale host matrix Young’s modulus E 0.2 GPa
Macro-scale FEM macro-scale host matrix Poisson’s ratio ν 0.2
Macro-scale FEM macro-scale host matrix Porosity of macropore φM 0.05
Macro-scale FEM macro-scale host matrix Porosity of micropore φm 0.1
Macro-scale FEM macro-scale host matrix Intrinsic permeability of macropore kM 1e−10 m2

Macro-scale FEM macro-scale host matrix Intrinsic permeability of micropore km 1e−14 m2

Macro-scale FEM macro-scale host matrix Parameter of mass transfer α 100 ∗ ρ f ∗ km
Macro-scale FEM macro-scale host matrix Dynamic viscosity µ 1e−3 Pa · s

Table 1: Material parameters for the grain- and macro-scale poromechanics problem with embedded strong
discontinuities across length scales. The parameters for the cohesive-frictional DEM model for rock are
defined in [Scholtès and Donzé, 2013].

and micro- pores of the bulk are assumed isotropic. The macropores in the bulk material refer to small fis-517

sures distributed homogeneously inside the porous media. The material parameters are presented in Table518

1. The DEM assembly represents the material inside the fault gouge and the macro-scale Young’s modulus519

for FEM is for the intact host continuum outside the fault. Nevertheless, the material parameters used for520

the DEM simulations are not suitable to represent the fault gouge composed of non—cohesive granular521

materials. These material parameters are merely chosen to create a benchmark case where the finite strain522

data-driven LBM-DEM-FEM framework can be completed within a limited amount of CPU time budgeted523

for the DEM simulations. Recall that the critical time step for explicit dynamic simulations in the DEM is524

related to the stiffness of the grain contacts. Higher stiffness generally leads to smaller critical time step and525

hence it takes longer to establish the static equilibrium [Liu et al., 2015, Wang and Sun, 2016a]. A more real-526

istic set of material parameters for discrete element modeling of fault gouge can be found in the literature,527

such as Guo and Morgan [2007] in which the particle Young’s modulus is about 70 GPa.528

To prepare the DEM assembly for the multiscale simulations, we first conducted isotropic compression529

and simple shear simulations to recover the macroscopic bulk modulus and shear modulus of the grain530

assembly where the grain material parameters are shown in Table 1. We found that the macroscopic bulk531

modulus K of the DEM assembly is 84.0 MPa (inferred from the isotropic tension and compression tests)532

and the shear modulus G is 71.4 MPa (inferred from simple shear tests). In other words, the macroscopic533

Young’s modulus of the assembly is 167 MPa and the Poisson’s ratio is 0.17. This somewhat surprising534

result indicates that the use of bonded cohesive-frictional contact models for the DEM assembly, may lead535

to the effective Young’s modulus higher than that of the particle. This can be attributed to the introduction536

of bonds among particles that lead to additional stiffness. As such, the materials in the embedded discon-537

tinuities exhibit only slightly lower macroscopic Young’s modulus than that of the intact continuum and538

the difference is within the size of a round-off error.539

Firstly, we examine the influence of infinitesimal strain formulation and finite strain formulation on540

the global stress-strain behavior of the numerical tests. The specimen with a straight interface is stretched541

and sheared at the same time, with a tension rate of 0.00005 m/s and a shear rate of 0.00004 m/s. The542

comparison of normal and shear stress-strain curves indicates a significant discrepancy in the peak stress543
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and softening regime between the two formulations (Fig. 7). This indicates that incorporating the geomet-544

rical nonlinearity is necessary for accurately predicting the interface behavior in the finite deformation545

regime. Secondly, we investigate the influence of the size of the assumed enhanced strain element with546

double porosity. Note that in the current formulation, the standard integration is adopted in the finite ele-547

ments embedding the strong discontinuity for both macropore and micropore fluid flow fields, hence the548

fluid flow solutions are dependent on the sizes of the traced finite elements. In order to accurately cap-549

ture the fluid flows in the neighborhood of the faults, such traced elements should have small heights and550

are aligned with the fault interfaces. The height of the element in the coarse mesh is 0.0015 m, and it is551

downsized to 0.0005 m in the fine mesh. Fig. 8 presents the curves of stress on the top surface vs. strain of552

the specimen in the normal (y) and shear (x) directions using both meshes. The dependency of solutions553

on mesh size is not significant when the elements with embedded strong discontinuity are aligned with554

the pre-existing interface and have small element heights. The effect of element orientation is not stud-555

ied, since, in this work, the AES elements are always in alignment with the geometry of the pre-existing556

fractures.557

(a) Normal stress-strain relation (b) Shear stress-strain relation

Fig. 7: Comparison of small strain and finite strain AES-DEM formulations for mixed-shear test on the
specimen with straight interface.

Next, we present the effect of interface geometry (embedded straight interface and sinusoidal interface558

Fig. 6). A mixed-mode loading-unloading-reloading path is applied on the top surface of the specimens.559

The time history of the deformation is plotted in Fig. 9. The global stress-strain curves in normal and shear560

directions are compared. Because of a high surface roughness for the sinusoidal interface, it can sustain561

higher shear stress compared to the straight interface, in both peak and softening regime. The differential562

stress and strain fields at the final stage of the loading are shown in Fig. 10. The strain localizes in the563

embedded strong discontinuity in both specimens. The stress field exhibits a homogeneous distribution for564

straight interface, while a stress concentration pattern exists in the specimen with the sinusoidal interface.565

Due to the fully coupled nature of the problem, the pore pressure and fluid flow inside the specimens566

strongly depend on the opening and shear of the strong discontinuity. The field of pore pressure and fluid567

flux in macropores presented in Fig. 11 show the motion of water from small fissures in bulk material568

into the enlarged pore space in the embedded strong discontinuity. The opening and the plastic dilatancy569

due to shearing of the pre-existing fracture result in the increase of effective permeability of the macropore570

space in the elements with embedded strong discontinuity. There is also fluid flow inside the channel in the571

interface whose permeability is enhanced by . For micropores, the distributions of pore pressure and flux572

in Fig. 11 also suggest the motion of water from surrounding bulk material to the solid matrix containing573

the interface.574
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(a) Normal stress-strain relation (b) Shear stress-strain relation

Fig. 8: Comparison of global stress-strain behavior with coarse mesh and fine mesh for mixed-shear test on
the specimen with straight interface.

(a) Deformation path (b) Normal stress-strain relation (c) Shear stress-strain relation

Fig. 9: Influence of interface geometry on the global stress-strain behavior in mixed-mode shear tests

5.2 Reactivation of faults575

This example analyzes the slip of a pre-existing and formerly stable fault in saturated soil triggered by576

the injection of water at a nearby location. The idealized problem geometry and boundary conditions are577

shown in Fig. 12. The dimensions of the 2D field of saturated porous media are 10 m x 10 m. The domain578

is constrained in the x-direction on the left boundary and in the y-direction on the bottom boundary. A579

foundation has been constructed on top of the domain, generating a uniform loading pressure of 10 MPa.580

A lateral confining pressure of 5 MPa is applied on the right boundary for the frictional porous media to581

sustain the vertical load. There exists a 45-degree fault under the foundation. The entire system is stable582

and has been in equilibrium for a long time since the construction of the foundation, thus the excess pore583

pressures in both fractures and host matrix are zero. The initial effective stress of the porous solid is hence584

σ
′
Init =

[
−5 0
0 −10

]
xy

MPa, (66)

where the subscript xy refers to the coordinate system {x, y} depicted in Fig. 12.585
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(a) Straight interface, differential stress (b) Sinus interface, differential stress

(c) Straight interface, differential strain (d) Sinus interface, differential strain

Fig. 10: Influence of interface geometry on the differential stress field (τ1 − τ3, where τ1 is the greatest
principal value and τ3 is the least principal value of the Kirchhoff stress tensor τ) and the differential
strain field (b1 − b3, where b1 is the greatest principal value and b3 is the least principal value of the Left
Cauchy-Green deformation tensor b) in mixed-mode shear tests.

The DEM RVEs characterizing the traction-separation law of the fault are placed in alignment with the586

strong discontinuity. They must be in the initial stress state consistent to the macroscopic boundary condi-587

tions. From the initial stress state of the macro-scale problem (Eq. 66) and via a coordinate transformation588

(σmn = RT · σxy · R), the initial stress tensor of the DEM assemblies is expressed as589

σ
′
InitRVE =

[
−7.5 2.5
2.5 −7.5

]
mn

MPa, (67)

where the subscript mn refers to the rotated frame {m, n} for the fault depicted in Fig. 12. The initial DEM590

RVEs in this stress state provide the correct amount of initial shear and normal tractions along the strong591

discontinuity.592

In this example, the particle contact model for DEM is frictional and without cohesion. The normal and593

tangential permeabilities are obtained from machine learning models trained with LBM simulation data.594

The bulk material is idealized as isotropic hyperelastic material. The permeability tensors in macro- and595
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(a) Straight interface, pressure and flow in macrop-
ore

(b) Sinus interface, pressure and flow in macropore

(c) Straight interface, pressure and flow in microp-
ore

(d) Sinus interface, pressure and flow in micropore

Fig. 11: Influence of interface geometry on the macropore and micropore pressure fields in mixed-mode
shear tests

micro-pores of the bulk are assumed isotropic and evolve according to the Kozeny-Carman equation. The596

material parameters used in the numerical example are summarized in Table 2.597

Water is injected to the macropore space (pre-existing fractures) of the field through the source S located598

at the center of the domain. The macropore pressure is zero on the top surface and the other three surfaces599

are no-flow boundaries. There is no drainage boundary for micropore pressure. This flow boundary condi-600

tion is to suppress spurious micropore pressure oscillations near the drainage boundary [Choo and Borja,601

2015]. The prescribed time history of Darcy velocity at the source is shown in Fig. 13. The injection profile is602

composed of injection-pause cycles, in which water supply is provided for 40 hours under a constant rate603

of 0.02 m/s, followed by a pause for 10 hours before the next cycle of injection. From the simulation results,604

the time history of the pore pressure in both scales at the source S is presented in Fig. 13. Upon injection605

or pause, the macropore injection pressure jumps up or plunges immediately, while the micropore pres-606

sure at the injection point has the opposite behavior. This is caused by the low mass transfer permeability607

between the macropores and micropores. Then in the transient regime, when fluid gradually diffuses into608
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Fig. 12: Geometry of fault reactivation problem and boundary conditions. Red line represents the pre-
existing fault.

Scale & Model Location Parameter Value

Grain-scale DEM micro-discontinuities Particle Young’s modulus E 0.5 GPa
Grain-scale DEM micro-discontinuities Particle Poisson’s ratio ν 0.3
Grain-scale DEM micro-discontinuities Particle Friction Angle ϕ π

6
Grain-scale DEM micro-discontinuities Particle density 2600 kg/m3

Grain-scale DEM micro-discontinuities Particle mean diameter 0.5 mm
Grain-scale DEM-LBM micro-discontinuities Initial intrinsic permeability 9e−14 m2

Macro-scale FEM macro-scale host matrix Young’s modulus E 0.2 GPa
Macro-scale FEM macro-scale host matrix Poisson’s ratio ν 0.2
Macro-scale FEM macro-scale host matrix Porosity of macropore φM 0.05
Macro-scale FEM macro-scale host matrix Porosity of micropore φm 0.1
Macro-scale FEM macro-scale host matrix Intrinsic permeability of macropore kM 1e−14 m2

Macro-scale FEM macro-scale host matrix Intrinsic permeability of micropore km 1e−17 m2

Macro-scale FEM macro-scale host matrix Parameter of mass transfer α ρ f ∗ km
Macro-scale FEM macro-scale host matrix Dynamic viscosity µ 1e−3 Pa · s

Table 2: Material parameters for the grain- and macro-scale poromechanics problem with embedded strong
discontinuities across length scales. The parameters for the simple frictional DEM model are defined in
[Šmilauer and Chareyre, 2015].

the micropores by mass transfer, micropore pressure slowly approaches the macropore pressure. The two609

pressures will eventually be identical when the diffusion between pores reaches equilibrium.610

The macropore and micropore pressure field at time 40 h, 100 h and 180 h are presented in Fig. 14. The611

pressure plume is initially of the shape of a circle and then expands as the increasing amount of water are612

being injected through the source. The pore pressure drops when the injection pauses, but the plume is613

still expanding, driven by the excess pore pressure that has not been entirely diffused. When the injection614

is resumed, the pore pressure rises again. The presence of the fault with higher permeability disturbs the615

pressure plume. The fluid flows more quickly to the top surface through the channel inside the fault. As for616

the micropore pressure field, it has a similar but delayed evolution behavior, due to the time required for617

the fluid transfer between macropores and micropores. The difference between macropore and micropore618
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(a) (b)

Fig. 13: Water supply in the fault reactivation problem. (a) Time history of the prescribed injection velocity
in macropore at the source point. (b) Computed responses of injection pressure in macropore and microp-
ore at the source point. The numbers mark the sequence of injection-pause cycles.

pressure is due to the different permeability in macropores and micropores for the fluid to diffuse in the619

macro-scale field, and also the low transfer permeability between pores.620

Due to the fully coupled nature of the problem, the mechanical responses of the porous solid, espe-621

cially the displacement jump and traction at the strong discontinuity, strongly depend on how pore fluid622

diffuses inside the pore space. The evolution of macro-scale mean effective stress field during the fluid623

injection cycles is shown in Fig. 15. The increase in the mean effective stress is due to the increase in ex-624

cess pore pressure, in agreement to the effective stress principle Eq. 13. This results in a reduction in the625

normal compression traction. As the fault is frictional, this reduction in normal compression also reduce626

the shear strength and ultimately leads to the reactivation of the fault. The slip can be clearly observed627

from the changes in deviatoric strain field illustrated in 16. The deviatoric strain gradually increases and628

concentrates inside the fault zone. This simulation result suggests the hazardous effect of injecting water629

to the underground, as a fast fluid flow may trigger the slip of a nearby pre-existing fault, leading to the630

failure of the foundation.631

The local responses to the fluid injection-pause cycles, including the spatial displacement jump, effec-632

tive nominal traction and spatial macropore permeability, are illustrated in Fig. 17, Fig. 18 and 19 respec-633

tively for three locations A, B, C in the fault indicated in Fig. 16. The plots clearly illustrate the failure634

of the fault system by the opening and sliding of the local microstructures, caused by reductions in both635

normal and tangential tractions. These results demonstrate the capacity of our proposed multiscale model636

in capturing the complex mechanical and hydraulic behaviors of the interfacial materials. This is an im-637

provement over the phenomenological traction-separation laws where idealized tensile and shear (linear638

or exponential) behavior is often adopted [Park and Paulino, 2011].639

6 Conclusion640

In this work, we present, for the first time, a multiscale coupling model that captures the hydro-mechanical641

responses of dual-permeability porous media with strong discontinuities in the finite deformation range.642

The traction-separation law is homogenized from DEM RVEs located in the strong discontinuity, and the643

interfacial permeability is given by a data-driven model trained with Lattice-Boltzmann simulations on de-644

formed RVEs. An enhanced-strain dual-porosity formulation suitable for incorporating the homogenized645

constitutive laws is derived. The proposed semi-data-driven multiscale framework is capable of simulat-646



26 Kun Wang, WaiChing Sun

(a) 40 hours (b) 100 hours (c) 180 hours

(d) 40 hours (e) 100 hours (f) 180 hours

Fig. 14: Evolution of macropore pressure (a-c) and micropore pressure (d-f) field. Arrows indicate the fluid
flux vector field in macropores (a-c) and in micropores (d-f). The non-zero components normal to the im-
pervious boundaries are due to the inaccuracy of the nodal projection of the flow vector field evaluated at
quadrature points.

(a) 40 hours (b) 100 hours (c) 180 hours

Fig. 15: Evolution of the mean effective stress field in the macro-scale simulation.

ing complex and fully coupled geomechanics problems with pre-existing and non-propagating fractures.647

This is demonstrated by mixed-mode shear tests that showcase the opening and shearing of interfaces and648

induced fluid flow in the specimen, as well as a field-scale problem that showcase the failure of a fault649

system induced by the underground injection of fluid.650
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(a) 40 hours (b) 100 hours (c) 180 hours

Fig. 16: Evolution of the differential strain field in the macro-scale simulation.

(a) RVE A (b) RVE B (c) RVE C

Fig. 17: History of normal Un and tangential Us components of the displacement jump JuK for local RVEs
A, B and C (location shown in Fig. 16). The numbers mark the sequence of injection-pause cycles (Fig. 13).

(a) RVE A (b) RVE B (c) RVE C

Fig. 18: History of normal Tn and tangential Ts components of the effective nominal traction T ′ for local
RVEs A, B and C (location shown in Fig. 16). The numbers mark the sequence of injection-pause cycles
(Fig. 13).
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(a) RVE A (b) RVE B (c) RVE C

Fig. 19: History of normal kn and tangential ks components of the macropore permeability kRVE for local
RVEs A, B and C (location shown in Fig. 16). The numbers mark the sequence of injection-pause cycles
(Fig. 13).
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Appendix A. Consistent linearization of the finite strain double porosity formulation664

Continuing the linearization of the weak form of the linear momentum conservation equation (50) after665

Section 4.3,666

δg3 =−
∫
B

η · Jρ f (∇x· δu) g dV. (68)

δg4 =
∫
B

η · δJ c (ṽm − ṽM) dV +
∫
B

η · J δc (ṽm − ṽM) dV +
∫
B

η · J c (δṽm − δṽM) dV

=
∫
B

η · J(∇x· δu) c (ṽm − ṽM) dV

+
∫
B

η · J ᾱ

µ f
(δpM − δpm) (ṽm − ṽM) dV +

∫
B

η · J 1
µ f

∂ᾱ

∂u
δu (pM − pm) (ṽm − ṽM) dV

+
∫
B

η · J c (δṽm − δṽM) dV.

(69)
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The last linearized term requires the linearization of the relative velocity of macropore667

δṽM

=δ(
qM

ρ f φψ
)

=δ(
−kM · (∇x pM − ρ f g)

µ f φ ψ
)

=− 1
µ f

δ[kM · (∇x pM − ρ f g)] φ ψ− kM · (∇x pM − ρ f g) δ(φ ψ)

(φ ψ)2 ,

(70)

where668

δ[kM · (∇x pM − ρ f g)]

=
∂kM
∂u

δu · (∇x pM − ρ f g) + kM · (∇x δpM −∇x pM · ∇x δu),
(71)

and669

δ(φ ψ)

=
∂φ

∂u
δu ψ + φ

∂ψ

∂u
δu,

(72)

and670

φ = 1− (1− φ0)
1
J

, δφ = (1− φ0)
δJ
J2 = (1− φ0)

∇x· δu
J

= (1− φ)∇x· δu. (73)

The linearization of the relative velocity of micropore follows similar derivations as above.671

For the linearization of the weak form of the mass conservation equation for macropore (51), using Eq.672

(5),673

δhM
1 =

∫
B

ζM δρM
0 dV

=
∫
B

ζM J ρ f ψ ∇x· δu dV +
∫
B

ζM J ρ f φ
∂ψ

∂u
δu dV

(74)

δhM
2 =+ ∆t ρ f

∫
B

δ(∇x ζM) · J kM
µ f
· (∇x pM − ρ f g) dV + ∆t ρ f

∫
B
∇x ζM · δJ

kM
µ f
· (∇x pM − ρ f g) dV

+ ∆t ρ f

∫
B
∇x ζM · J

δkM
µ f
· (∇x pM − ρ f g) dV + ∆t ρ f

∫
B
∇x ζM · J

kM
µ f
· δ(∇x pM) dV

=− ∆t ρ f

∫
B
∇x ζM · ∇x δu · J kM

µ f
· (∇x pM − ρ f g) dV

+ ∆t ρ f

∫
B
∇x ζM · J (∇x· δu)

kM
µ f
· (∇x pM − ρ f g) dV

+ ∆t ρ f

∫
B
∇x ζM · J

1
µ f

∂kM
∂u

δu · (∇x pM − ρ f g) dV

+ ∆t ρ f

∫
B
∇x ζM · J

kM
µ f
· (∇x δpM −∇x pM · ∇x δu) dV

(75)

δhM
3 =∆t

∫
B

ζM δJ c dV + ∆t
∫
B

ζM J δc dV

=∆t
∫
B

ζM J (∇x· δu) c dV + ∆t
∫
B

ζM J
ᾱ

µ f
(δpM − δpm) dV + ∆t

∫
B

ζM J
1

µ f

∂ᾱ

∂u
δu (pM − pm) dV

(76)
The linearization of the weak form of the mass conservation equation for micropore (52) follows similar674

derivations as above.675
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