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Abstract The onset and propagation of the cracks and compaction bands, and the interactions between6

them in the host matrix, are important for numerous engineering applications, such as hydraulic fracture7

and CO2 storage. While crack may become flow conduit that leads to leakage, formation of compaction8

band often accompanies significant porosity reduction that prevents fluid to flow through. The objective of9

this paper is to present a new unified framework that predicts both the onset, propagation and interactions10

among cracks and compaction bands via an eigen-deformation approach. By extending the generalized11

Griffith’s theory, we formulate a unified nonlocal scheme that is capable to predict the fluid-driven frac-12

ture and compression-driven anti-crack growth while incorporating the cubic law to replicate the induced13

anisotropic permeability changes triggered by crack and anti-crack growth. A set of numerical experiments14

are used to demonstrate the robustness and efficiency of the proposed model.15

Keywords compaction band; eigen-erosion; porous media; hydraulic fracture; anti-crack; hydraulic16

aperture17

1 Introduction18

Crack growth in fluid-infiltrating porous media has important implications on many engineering applica-19

tions and activities. The onset, nucleation, branching and coalescence of cracks may dictate the success of20

geological disposals of carbon dioxide, hydraulic fracture operation, geothermal energy extraction, storage21

of nuclear waste underground and the tunneling. In the case where the void space of the porous media is22

filled with fluid, the propagation of fracture may also lead to significant increase in effective permeability23

and induced anisotropy in the hydraulic responses of the porous media [Haimson et al., 1967, Zoback et al.,24

1977, Detournay, 2016]. Perhaps a less well-known fact to the general public is that porous media may also25

form compaction band. As shown in Figure 1, a compaction band is a narrow zone in which large porosity26

reduction is observed in an otherwise intact host matrix [Antonellini et al., 1994, Haimson, 2001, Schultz27

et al., 2010, Sun et al., 2011b].28

Due to the highly localized porosity reduction, pure and shear-enhanced compaction band may lead to29

up to several orders of permeability reduction [Baud et al., 2004, Fossen et al., 2011, Sun et al., 2011b,a, Hol-30

comb and Olsson, 2003]. Depending on the mineralogy, porosity, grain size, loading conditions and other31

environmental factors, compaction band and fractures may coexist in a hydro-geological system. The inter-32

actions between them in the host matrix may profoundly alter the mechanical and hydraulic characteristics.33

For instance, in a series of papers (Haimson and Song [1993], Lee and Haimson [1993], Haimson [2001],34

Haimson and Lee [2004]), Haimson and co-workers have generated a collection of experimental evidence35

to support that borehole breakouts, the elongations of borehole cross-section resulting from preferential36
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Fig. 1: (LEFT) SEM image of a laboratory-reproduced compaction band in Bentheim sandstone reported in
Baud et al. [2004] (RIGHT) SEM image of a field compaction band in Navajo Sandstone found in Buckskin
Gulch site, Utah as reported in Fossen et al. [2011] (Figure reproduced from Baud et al. [2004], Fossen et al.
[2011]).

rock failure, is related to the propagation of both the fracture and compaction band. Their experimental37

data also indicate that the compaction band, which advances orthogonally to the maximum compressive38

stress, can be regarded as a Mode I anti-crack in the LEFM framework [Sternlof et al., 2005]. Related find-39

ings can also be found in the laboratory tests, such as Stanchits et al. [2009], Charalampidou et al. [2014], in40

which notched specimen are used to study the initiation and propagation of compaction band and measure41

the two fracture energies related respectively to fracture and compaction bands, as shown in Figure 2.42

These experimental findings are further validated in the field work performed on the Aztec Sandstone43

found in the Valley of Fire, Nevada, in which another series of theoretical and experimental studies (e.g.44

Mollema and Antonellini [1996], Sternlof et al. [2005], Rudnicki and Sternlof [2005], Rudnicki [2007]), have45

found that the normal contractional strain across the compaction band is nearly constant, which implies46

that a constant driving stress along the compaction bands with negligibly small processing zone. These re-47

sults are consistent with the LEFM anti-crack interpretation based on Griffith’s theory. First pointed out by48

Sternlof et al. [2005], the anti-crack theory on compaction band explains the initiation and propagation of49

compaction bands as the consequence of Griffith-type grain-scale flaw collapses due to weak grains, irreg-50

ular pores or other causes. This similarity with Griffith’s theory on brittle fracture provides an opportunity51

for us to derive a unified variational framework in which the propagation of both cracks and anti-cracks52

are viewed as the competition between the surface energy and the restitution of bulk energy during crack53

or compaction band growth [Francfort and Marigo, 1998, Bourdin et al., 2008].54

It should be noted that the anti-crack theory is not the only one accepted theoretical framework to55

interpret the onset of compaction band. In particular, bifurcation analysis has also been widely used to56

predict the onset of the compaction band at the continuum scale [Issen and Rudnicki, 2001, Aydin et al.,57

2006, Chemenda, 2011]. As pointed out in Charalampidou et al. [2014], the drawback of this approach58

is that it is difficult to apply bifurcation analysis to predict compaction band patterns on heterogeneous59

material or to explain the various geometrical features such as the wiggly patterns recently found in Liu60

et al. [2015].61

While there are many discrete modeling approaches proposed in to simulate compaction band and62

fractures with either DEM or lattice-spring network (e.g. Katsman et al. [2005], Wang et al. [2008], Liu63

et al. [2015], Lee et al. [2016a]), the applicability of these models are limited to interpretation of micro-64

scale mechanism in the laboratory under full drained condition. This limitation is likely related to (1)65

the prohibitive computational cost to simulate grain-scale processes at the field scale, (2) the difficulty to66

calibrate material parameters for grain crushing and fragmentation process, and (3) the difficult to properly67

introduce the hydro-mechanical effect in the grain scale with a 2D DEM and lattice-spring model.68
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Fig. 2: Compaction band initiation and propagation in a wet Bentheim Sandstone specimen reported in
Stanchits et al. [2009] (Figure reproduced from Stanchits et al. [2009]).

On the other hand, there are significant progress made in the development of numerical approaches69

for simulating the propagation of fluid-driven fracture at the macroscopic continuum scale. For instance,70

cohesive zone interface element can be inserted to model the fracture process zone when the crack path71

is known a priori in a finite element framework. The Poiseuille flow along the cracks is then simulated72

with finite element or finite difference methods to capture the hydro-mechanical coupling effect. [Boone73

et al., 1986, Secchi and Schrefler, 2012, Carrier and Granet, 2012]. Another popular modeling technique is74

to introduce enhancement basis in the finite element space to capture the crack as a strong discontinuity.75

The X-FEM and assumed strain model are examples where cracks are explicitly represented as a sharp76

interface [Armero and Callari, 1999, Gupta and Duarte, 2014, Salimzadeh and Khalili, 2015]. Nevertheless,77

the efficiency of the embedded strong discontinuity approach often comes with the price that one must be78

able to generate proper mathematical representation of the geometry and topology of the cracks. This is79

not a big issue if the crack is straight. However, the modeling of curved crack path, crack branching and80

coalescence is by no mean straightforward [Khoei, 2014]. Furthermore, in order to simulate the crack prop-81

agation via the embedded strong discontinuity approach, modelers must select among multiple criteria or82

models that predict the onset (c.f. [Begley and Landes, 1972]) and propagation direction (e.g. maximum83

hoop stress criterion), and detect potential branching [Linder and Armero, 2009] for a particular situation.84

This selection process can be a trial-and-error empirical task that greatly depends on independent tastes85

and intuition.86

Fracture surface may also be approximated by a phase-field or smeared crack model where the lo-87

cation of the crack is represented by an implicit function but the displacement field itself may remains88

smooth [Bourdin et al., 2008, Amor et al., 2009, Borden et al., 2012, Miehe and Mauthe, 2016, Clayton and89

Knap, 2016, Lee et al., 2016b]. A notable departure of this approach from the embedded strong disconti-90

nuity approach is that one may recast it as an energy minimization problem and the onset, propagation,91

branching and coalescence of fractures can be simulated without introducing any additional criterion for92

each mechanism. Nevertheless, recent work, particularly, Farrell and Maurini [2016] has shown that the93

phase-field model can be computationally demanding due to the imposed demands to resolve the small94

length scales. The popular operator-split algorithm is robust, but convergence can be slow due to the large,95
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ill-conditioned linear sub-problems that sequentially updates the phase field and displacement. Another96

approach that does not introduce shape interface is the element erosion method in which element is sim-97

ply deleted when a specific criterion is met. This method is understandably very easy to implement, but98

also exhibits severe mesh dependence. This problem is recently cured in Schmidt et al. [2009] where a99

variational framework similar to Bourdin et al. [2008] is incorporated into the Griffith’s fracture theory.100

This approach interprets the deformation in the eroded element as an eigen-deformation while introduc-101

ing a nonlocal regularized fracture energy to eliminate the mesh dependence. Pandolfi and Ortiz [2012]102

develops a simple finite element erosion method based on this eigen-fracture scheme. Like the phase field103

approach, the eigen-fracture model is capable of capturing curved crack path, crack branching and coales-104

cence without the spurious mesh dependency. However, there is no additional field variable introduced in105

the numerical model and hence relatively easy to implement. Nevertheless, the extension to poromechan-106

ics problem has not yet been considered.107

Due to the wide spectrum of engineering applications related to fractures and compaction bands, a108

unified numerical model that can both predict the onset, propagation, branching and coalescence of com-109

paction band and fractures and the interaction between them in fluid-infiltrating porous media is invalu-110

able. While there are numerous efforts to separately model fractures and compaction band at the contin-111

uum scale, to the best of the authors’ knowledge, there has not yet any attempt to propose numerical model112

that can capture both the fracture and compaction band in fluid-infiltrating porous media within a unified113

Griffith fracture framework.114

The objective of this research is to present a consistent and unified theory and develop a feasible nu-115

merical approach to fulfill this knowledge gap. In particular, we introduce a generalization of the eigen-116

deformation and corresponding dissipation energy such that fracture and compaction band can be ide-117

alized as cracks and mode I anti-crack. Due to the existence of two dissipation mechanisms, we use the118

spectral decomposition to split the stored elastic energy into the tensile and compressive parts such that119

the onset of different eigen-deformation within each element is driven by the corresponding types of reg-120

ularized dissipation energy. Given the fact that hydraulic aperture is rarely identical to the mechanical121

aperture, we introduce a path-searching algorithm to introduce a nonlocal cubic law in the eigen-erosion122

element. This introduction of regularization is found to be essential to ensure that the enhancement or123

suppression of hydraulic energy dissipation due to the formation of shear band and compaction band in124

the eroded elements converges upon mesh refinement. Consequently, the proposed model allows one to125

simulate the onset, propagation and coalescence of both fractures and compaction band, all within a con-126

sistent variational framework. This is done without introducing additional criteria to determine fracture127

propagation direction, without the need of inserting additional degree of freedom during the simulations128

to reflect the altering geometry of the cracks, and without the introduction of any nodal solution in the129

discretized finite element model. The simplicity achieved in this work is important to ensure the proposed130

method feasible to practicing engineers and scientists.131

The rest of this paper is organized as follows. We first explain the modeling of the onset and propaga-132

tion of fractures and compaction bands in fluid-infiltrating porous media within a variational framework133

(Section 2). We then highlight the important aspects of the numerical implementation, such as the split of134

tensile and compressive strain, and the introduction of the regularized cubic law specific for the eigen-135

fracture problems (Section 3). Numerical examples are used to demonstrate the hydromechanical interac-136

tions among the propagating fractures and compaction bands (Section 4). A conclusion that summarizes137

the major points of this work is introduced in the Section 5.138

As for notations and symbols, bold-faced letters denote tensors; the symbol ’·’ denotes a single con-139

traction of adjacent indices of two tensors (e.g. a · b = aibi or c · d = cijdjk ); the symbol ‘:’ denotes a140

double contraction of adjacent indices of tensor of rank two or higher ( e.g. C : εe = Cijklε
e
kl ); the symbol141

‘⊗’ denotes a juxtaposition of two vectors (e.g. a⊗ b = aibj) or two symmetric second order tensors (e.g.142

(α⊗ β) = αijβkl). As for sign conventions, unless specify otherwise, we consider the direction of the tensile143

stress and dilative pressure as positive.144
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2 Multiphysical eigen-fracture model for hydro-mechanical problems145

We present a unified framework that predicts the growth of both cracks and anti-cracks in brittle fluid-146

saturated porous media using the eigen-erosion approach. The relation between eigen-fracture model147

and generalized Griffith’s theory for brittle fracture is first examined in Schmidt et al. [2009], and sub-148

sequently further developed in Pandolfi and Ortiz [2012] to simulate crack growth in a finite element149

framework. This fracture model contains an energy functional depending on the displacement field u, a150

field of eigen-deformation ε∗ and a small regularization parameter ε. ε∗ allows the displacement field to151

exhibit discontinuity with no cost of local elastic energy, thus can describe the fracture occurred in the152

body. The derived eigen-erosion scheme, which is a mesh independent element deletion approach, re-153

stricts the eigen-deformation to be either 0 in the intact linear elastic elements, or equal to the local strain154

ε(u) = 1
2 (∇u + ∇uT) in elements representing the crack. Here our new contribution is to extend this155

framework to include eigen-deformation that represent not only fracture but also anti-crack. We also in-156

clude additional terms in the energy functional to account for pore fluid contribution.157

In fluid-saturated porous media, the external loading imposed on porous solid is partially carried by158

the solid skeleton and partially supported by the fluid [Terzaghi, 1936, Biot, 1941]. Following the effective159

stress principle, the total stress σ is decomposed to the effective stress σ′ acting on grains and a hydrostatic160

stress:161

σ = σ′ − bp f I ; b = 1− K
Ks

, (1)

where p f is the pore fluid pressure, b is the Biot’s coefficient, I is the identity tensor, K and Ks are the162

bulk modulus of the solid skeleton and that of the solid grains. The effective stress principle motivates the163

decomposition of total elastic energy into effective strain energy stored in solid skeleton and energy stored164

in pore fluid [Armero and Callari, 1999], i.e.,165

W(ε, ε∗, p f ) = Weff(ε, ε∗) + Wfluid(ε, p f ). (2)

For linear elastic solid skeleton, the effective strain energy takes the form:166

Weff(ε, ε∗) =
∫

Ω

1
2
(ε− ε∗) : Ce : (ε− ε∗)dV (3)

where Ω is the domain of the elastic body, Ce is the forth-order elasticity tensor of the solid skeleton. The167

eigen-deformation field takes different values in intact solid, crack C and compaction band CB:168

ε∗(x, t) =


ε+(x, t) x ∈ C

εinelnCB(x, t)⊗ nCB(x, t) x ∈ CB
0 x ∈ Ω \ (C ∪ CB)

(4)

This choice of eigen-deformation field implies that we assume the zero-traction boundary conditions across169

the crack, which is suitable for brittle fracture. As for the compaction band, the assumption is made based170

on experimental observations: upon compaction band formation, the grain crushing and pore collapse171

induce significant uniaxial inelastic strain εinel (e.g., 10%) along the principal direction of maximum com-172

pressive stress nCB [Sternlof et al., 2005]. The numerical value of εinel is a material parameter calibrated to173

match the experimental porosity reduction (private communication, Rudnicki, 2016). Another underlying174

simplification is that the elastic property of the compaction band does not differ significantly from the host175

matrix. The latter simplification is likely to be feasible for limited cases only and should be considered176

with caution. For instance, in the natural compaction bands found in the Aztec Sandstone formation, the177

compaction band is stiffer than the host rock due to the local pressure solution healing, porosity loss and178

effective grain size distribution. Meanwhile, the shear modulus is affected by competing mechanisms, i.e.,179

the reduced porosity, which enhances shear stiffness, and the micro-fracturing and effective grain size re-180

duction which reduce shear stiffness [Sternlof et al., 2005]. On the other hand, the effect of elastic modulus181

difference between the host matrix and the compaction band has been studied in Rudnicki and Sternlof182

[2005] and Rudnicki [2007], where the strain energy per unit area required to propagate the compaction183

band in an infinite layer of finite thickness corresponding for compaction band of different stiffness are ana-184

lyzed. The analyses concluded that the mismatch of elastic moduli has a relatively small effect on the stress185
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ahead of the band and the energy release comparing to that of the far-field stress and the amount of inelas-186

tic compactive strain triggered by the compaction band. Nevertheless, a more refined phenomenological or187

micro-structure based model that can more accurately captures the evolving relationship between the elas-188

tic behaviors of the compaction band and the host rock may still bring new insights into the interpretation189

of critical energy release rate and the influences of microstructural attributes on the constitutive responses190

of compaction bands. Such an improvement remains a significant challenge due to the difficulties to gener-191

ating reliable measurements of the very thin and tabular compaction bands in the laboratories (e.g. Sternlof192

et al. [2005]) and will only be considered in the future when the relevant data becomes available.193

In this study, a material element is allowed to be simultaneously in crack set C and compaction band194

CB in the proposed model, i.e., C ∩ CB 6= ∅. A compaction band zone could become crack, as observed in195

borehole breakout experiments that anti-dilatant failure zone presents at the tip of fracture-like breakout196

in sandstone with high porosity [Haimson, 2001]. On the other hand, once a material element is cracked,197

it is excluded from the compaction band detection scheme to enforce the appropriate path-dependent be-198

haviors.199

The fluid contribution to the total elastic energy reads [Armero and Callari, 1999, Miehe and Mauthe,200

2016]:201

Wfluid(ε, p f ) =
M
2
[(1− b)εv −

p f

M
]2 (5)

where εv = trace(ε) is the volumetric strain, M is the Biot’s modulus defined as [Nur and Byerlee, 1971]:202

M =
KsK f

K f (b− φ) + Ksφ
(6)

with φ being the porosity, Ks and K f being the bulk modulus of solid particle and pore fluid, respectively.203

The dissipation associated with the Darcian flow of the pore fluid D f (ε, ε∗, p f ) is expressed as:204

D f (ε, ε∗, p f ) = −
∫ t

0
[
∫

Ω

1
2

κ(ε, ε∗)

µ
: (∇p f ⊗∇p f )dV]dτ (7)

where µ is the dynamic viscosity of fluid and κ(ε, ε∗) is the effective permeability of the porous medium,205

which we assume to be symmetric. To capture the porosity-permeability relation responsible for the forma-206

tion of flow barriers (due to the compaction band formation) and flow conduits (due to to crack growth),207

the effective permeability is written in terms of both the deformation and the eigen-deformation of the208

solid skeleton. The fracture energy accounting for crack and anti-cracks, in the context of eigen-fracture,209

reads:210

GC
|CεC |
2εC

+ GCB
|CεCB |
2εCB

,

where εC and εCB are length scale parameters related to crack and anti-crack, respectively. Their values211

can be different. The symbol |Cε| denotes the ”ε-neighborhood” of crack C or anti-crack CB, i.e., the sets212

of points having distance less or equal to ε from C or CB [Schmidt et al., 2009, Pandolfi and Ortiz, 2012].213

GC and GCB are critical energy release rates. The regularized energy-dissipation functional in the context214

of fluid-saturated brittle porous media writes:215

F(εC ,εCB)
(ε, ε∗, p f , t) =

∫
Ω

1
2
(ε− ε∗) : Ce : (ε− ε∗)dV −

∫
Γt

T̄ · udS

+
∫

Ω

M
2
[(1− b)εv −

p f

M
]2dV +

∫ t

0
[
∫

Ω
s̄p f dV −

∫
Γq

q̄ · p f dS]dτ

+ GC
|CεC |
2εC

+ GCB
|CεCB |
2εCB

+D f (ε, ε∗, p f ).

(8)

where Γt is the boundary on which the traction T̄ is applied, Γq is the boundary on which the flux q̄ is216

prescribed, and s̄ is the source flux.217
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The regularized crack/anti-crack tracking problem consists of minimizing the above energy-dissipation218

functional at every time step subject to monotonicity constraint:219 {
C(t) ⊂ C(t + ∆t)

CB(t) ⊂ CB(t + ∆t) . (9)

The finite element implementation of the eigen-fracture framework consists of taking the eigen-deformation220

field to be constant over one element and restricting the value in a binary case: the element is either intact221

(linear elastic) or completely failed (eroded). This leads to a simple element deletion approach. However,222

it is superior to other element erosion methods that it converges to the Griffith fracture with infinitesimal223

mesh size and does not exhibit spurious mesh dependencies.224

The eigen-erosion approach is simple and could be easily implemented to finite element codes for225

continuum mechanics without intruding the existing structure, unlike some numerical schemes such as226

X-FEM which must insert new degrees of freedom into the global equilibrium equations. The Ids of eroded227

elements at time tn are contained in the crack set Cn. The equilibrium displacement field with crack Cn is228

solved by conventional FEM. Then the crack-tracking scheme iterates over all elements K and computes229

the associated elastic energy release of the solid skeleton −∆EK by the explicit first-order estimation (cf.230

Pandolfi and Ortiz [2012]):231

− ∆EK ∼
1
2

uK
T · ∆SK · uK , (10)

where uK is the displacement vector of element K and ∆SK is its element stiffness matrix. The effective crack232

increment ∆AK is also computed assuming that K is included in the new crack set Cn+1. The increment is233

defined as the area difference (in 2D problems) between the ε-neighborhood of crack Cn ∪ K and that of234

crack Cn. The regularization parameter ε defining the region supporting the computation of fracture energy235

is chosen to be proportional to the element size h and tends to zero more slowly than h: ε = 4h. The net236

energy gain −∆FK = −∆EK − Gc∆AK is computed for each element K and the element having the largest237

positive energy gain is eroded from the simulation. This procedure is repeated within the time step until238

−∆FK for all elements are inferior to zero.239

In the new unified eigen-erosion framework, we highlight our contribution of introducing the eigen-240

decomposition algorithm for crack/anti-crack tracking. This scheme is more appropriate when shear and241

compaction band are modeled, since it identifies the principal directions of deformation and distinguishes242

the tensile/compressive contributions. Another important aspect is the development of hydraulic aperture243

algorithm for fracture in porous media. Both scheme are detailed in the section of numerical implementa-244

tion.245

3 Numerical implementation246

Within each time step t ∈ [tn, tn+1], the hydro-mechanical field variables (displacement field u, pore pres-247

sure field p f ) and the element-wise constant eigen-deformation field representing cracks and compaction248

bands are solved in a staggered manner. Given the crack and compaction band configuration obtained from249

the previous time step, u and p f are updated to achieve equilibrium in response to new mechanical loading250

or injection of fluid. This step consists of solving the governing equations of saturated porous media (un-251

broken and fractured), i.e., balance of linear momentum and balance of fluid mass. The standard finite ele-252

ment procedure is presented in Appendix for completeness. Holding the hydro-mechanical field constant,253

a unified spectral-decomposition crack/anti-crack tracking scheme is then performed to update the sets254

of discontinuities C and CB. If new crack or anti-crack elements are identified, the hydraulic permeability255

matrices are updated to account for the flow conduit and flow barrier effect of crack and compaction band,256

respectively. A new algorithm based on a projected eigen-erosion field is proposed for determination of257

flow direction and hydraulic aperture inside crack. This staggered procedure is iterated until no element258

is added to the crack nor anti-crack sets. Algorithm 1 summarizes this unified eigen-erosion framework259

and important algorithmic aspects are elaborated in the following subsections. Note that other choices of260

solution sequence are also possible. For instance, instead of simultaneous tracking cracks and compaction261

bands, crack set could be updated first and the hydro-mechanical field is equilibrated before searching for262

new anti-crack set. In principle, the theories and algorithms presented in this work should be valid for263
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one-, two- and three-dimensional problems. Nevertheless, the three-dimensional simulations would only264

be practical if the solver is sufficiently fast to handle the fine mesh required to capture the crack paths in265

many 3D applications with complex fracture patterns. This extension will be considered in the future but266

is out of scope of this work.267

Algorithm 1 Main

Require: Displacement field un and pore pressure field p f
n at time tn.

Require: Crack set Cn and anti-crack set CBn at time tn.
1: Set time to tn+1, apply loading, initialize new crack set C0

n+1 = Cn, new anti-crack set CB0
n+1 = CBn,

i = 0.
2: Compute equilibrium displacement ui

n+1 and pore pressure field p f i
n+1 with Ci

n+1 and CBi
n+1.

3: Update Ci+1
n+1 and CBi+1

n+1 (Algorithm 2).
4: Update local permeability of Ci+1

n+1 and CBi+1
n+1 (Algorithm 3 or 4).

5: if Ci+1
n+1 6= Ci

n+1 or CBi+1
n+1 6= CBi

n+1 then
6: i← i + 1.
7: go to 2.
8: else
9: Exit

3.1 Generalized eigen-deformation modes for fracture and compaction band (Algorithm 2)268

The propagation of both crack and compaction band requires dissipating a specific amount of energy to269

create new crack surfaces or advance compaction zones. As reported in Baud et al. [2004], Rudnicki and270

Sternlof [2005], Rudnicki [2007], this energy may vary, depending on the type of kinematic modes. In the271

proposed framework, we assume that the elastic responses are isotropic and the stress and strain tensor272

are co-axial.273

The proposed eigen-erosion framework distinguishes the tensile and compressive contributions of the274

effective elastic strain energy density in an intact element, following the idea by Miehe et al. [2010]:275

Weff(ε) = W+
eff(ε

+) + W−eff(ε
−)

=
1
2

σ+ : ε+ +
1
2

σ− : ε−.
(11)

The tensile and compressive split of the strain and stress tensor writes:276

ε = ε+ + ε− = ∑
i
< εi >+ ni ⊗ ni + ∑

i
< εi >− ni ⊗ ni;

σ = σ+ + σ− = ∑
i
< σi >+ ni ⊗ ni + ∑

i
< σi >− ni ⊗ ni,

(12)

where εi and σi are eigenvalues, ni are associated eigenvectors common to ε and σ. The bracket operators277

< x >+ and < x >− are defined as:278

< x >+=
x + |x|

2
, < x >−=

x− |x|
2

. (13)

Note that, in addition to the particular form of tensile and compressive splitting we used in this paper,279

other splitting methods for stress and strain also exist and have been adopted for variational approaches280

to fracture in the literature. For example, the strain energy could be decomposed into volumetric and281

deviatoric parts, as suggested in Clayton and Knap [2014] and recently in Mitchell et al. [2016]. Presumably,282

separating the volumetric and deviatoric contributions of strain energy may make it more convenient to283
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capture the pressure-sensitive behavior. For instance, one may allow bulk and shear modulus to have284

different residual values or partition the amount of energy contribution of deviatoric responses used to285

form compaction band and fracture by introducing the proper material parameters. These options will be286

further investigated in future study.287

On the bases of field and laboratory data, Sternlof et al. [2005] idealize compaction bands as highly288

eccentric and asymmetric ellipsoidal zones within which porosity loss induced by grain crushing takes289

place. The direction of the band is perpendicular to the maximum remote compressive stress. Since the290

aspect ratio of the compaction bands is of order 10−3 − 10−4 [Sternlof et al., 2005], we ignore the elliptical291

geometry and represent the band by tabular zones of ”eroded” elements, similar to the crack geometry.292

The pore collapse and grain crushing result in significant uniform uniaxial inelastic compactive strain293

εinel = −0.1 inside the band. This literature also states that the elastic property of the band, although294

differing from the surrounding intact solid matrix, has little effect on the stress state adjacent to the band295

with large εinel and shear modulus. Thus we adopt the same elastic property for compaction bands in this296

study for simplification.297

The detection of propagation of anti-crack requires the estimation of compressive strain energy dissi-298

pation per unit advance of compaction band. Rudnicki and Sternlof [2005] analytically investigated the299

propagation of an isolated semi-infinite compaction band and proposed that the strain energy density re-300

leased is simply σaheadεinel when the elastic modulus of the compaction band remains the same as the sur-301

rounding intact porous media. σahead is the compressive stress far ahead of the anti-crack tip and εinel is the302

uniaxial inelastic compactive strain in the band. In the proposed eigen-fracture finite element framework,303

assuming that the anti-crack process zone is negligibly small, the strain energy released by converting an304

intact element to compaction band element equals to
∫

Ωe
min(< σi >−) · εinel dV, where min(< σi >−) is305

the maximum compressive stress and Ωe is the domain of the element. On the basis of field observation306

and the data collected in the Aztec Sandstone formation, previous works such as [Sternlof et al., 2005, Rud-307

nicki and Sternlof, 2005] and the experimental work done by Vajdova and Wong [2003], Baud et al. [2004],308

Stanchits et al. [2009], Charalampidou et al. [2014], a general agreement is that compaction band can be309

idealized as a Griffith-type flaws that propagates nearly uniform uniaxial plastic strain. After the formation,310

the compaction band is best described as an elastic inclusion embedded within an elastic host matrix.311

Fig. 3 presents the idealized stress-strain relation along the principal direction nCB associated with312

min(< σi >−). During the compaction band formation process, the element undergoes an inelastic strain of313

−0.1 while the stress remains the same, representing a perfect-plastic constitutive behavior. The associated314

strain energy (hatched square area in Fig. 3(a)) is released and causes the pore collapse and grain crushing315

at the grain scale. Collectively, these mechanisms lead to the formation of compaction band. After the316

formation, a compaction band, which is composed of the compacted and sometime fragmented grains due317

to pore collapses and grain crushing (see Figure 1), can be viewed as an elastic inclusion, which is capable318

of locally storing elastic energy without plastic dissipation.319

Based on the assumption that the compaction band may be idealized as anti-crack whose propagation320

may lead to the development of nearly uniform plastic strain in a narrow zone, the eigen-deformation field321

inside the compaction band element takes the form of a rank-one tensor, i.e.,322

ε∗ = εinel = εinelnCB ⊗ nCB, (14)

where we set εinel = −0.1 in the numerical example sections. Assuming that the elastic response of the323

porous media is approximately linear, the constitutive law of the compaction band therefore reads [Sternlof324

et al., 2005],325

σ = Ce : (ε− εinel). (15)

Hence this element incorporates the local porosity reduction inside the compaction band by re-setting the326

referred equilibrium strain to be the eigen-deformation εinel. This treatment is in analogy to the sequence327

of cutting-and-welding operations used by Eshelby to predict the elastic field [Eshelby, 1957, Sternlof et al.,328

2005, Katsman and Aharonov, 2006, Rudnicki, 2011], where the element for compaction is first removed329

from the elastic body and then irreversibly and uniaxially shortened. Traction is then applied to the com-330

pacted element in order to restore its geometry before removal. Finally, the stretched element is re-inserted331

back to the surrounding solid and to compute the complete stress field.332
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(a) (b)

Fig. 3: Compaction band (anti-crack) model. (a) uniaxial stress-strain relation of compaction band. Assume
σ1 = min(< σi >−) and set compactive stress and strain as positive value. (b) porosity reduction of
compaction band element.

3.2 Transverse isotropic permeability: Nonlocal and local hydraulic aperture algorithm333

As the propagation of fracture and compaction band triggers changes in the size and geometry of void334

space, they may also affect the effective permeability of the porous media. In addition to the change in the335

magnitude of the permeability, the localized damage zones may also change the flow paths and induce336

anisotropy of the effective permeability. The permeability changes as well as the induced anisotropy can337

be incorporated in a double-permeability model [Pride and Berryman, 2003, Choo et al., 2016] or captured338

explicitly [Foster and Nejad, 2013, Miehe and Mauthe, 2016]. In either case, we assume that the flow inside339

the fracture and in the host matrix obeys the Darcy’s law, i.e.,340

q̄ = − 1
µ

k∇x p (16)

where q̄ is the Darcy velocity, µ is the dynamic viscosity (with the unit of pressure times time) and k is the341

permeability tensor (with the units of area). We idealize that the localized permeability change due to the342

presence of compaction band and fracture is of rank-one. In the case of fracture mode, the effective perme-343

ability along the flow direction inside the fracture k f is related to the fracture opening (hydraulic aperture)344

w via the cubic law. As pointed out in previous work, such as Witherspoon et al. [1980], Zimmerman and345

Yeo [2000], the local cubic law is only valid when the Reynolds number is sufficiently low such that the346

transmissivity is independent of flow rate and proportional to the cube of the mean hydraulic aperture w.347

The cubic law for three-dimensional space takes the following form,348

q̄ · t = −
k f

µ
(∇x p · t) = − w3

12µ
(∇x p · t) (17)

where t is the unit vector parallel to the fracture line. In two-dimensional cases where one assumes that349

the crack is also two-dimensional, the cubic law is often rewritten such that,350

q̄ · t/b = −
k f

bµ
(∇x p · t) = − w2

12µ
(∇x p · t) (18)
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Algorithm 2 Crack & Compaction band algorithm

Require: Crack set Cn and anti-crack set CBn at time tn
Require: Priority queue of crack PQC and anti-crack PQCB.

1: Set PQC = PQCB = ∅.
2: for all elements K not in Cn ∪ CBn do
3: for all integration points p of K do
4: Spectral decomposition and tensile/compressive split of current strain and stress tensor: ε+, ε−,

σ+ and σ− ( Eq. 12 ).
5: Compute the inelastic compressive strain tensor εinel ( Eq. 14 ).
6: Compute elastic energy release

−∆E+
K =

∫
ΩK

1
2

σ+ : ε+ dV

−∆E−K =
∫

ΩK
σ− : εinel dV

7: Compute effective anti-crack area increment ∆AK.
8: Compute net energy gain

−∆F+
K = −∆E+

K − GC∆AK

−∆F−K = −∆E−K − GCB∆AK

9: If −∆F+
K ≥ 0, push K into PQC, if −∆F−K ≥ 0, push K into PQCB.

10: if PQC 6= ∅ then
11: Pop from PQC elements K with −∆F+

K within TOL of largest, add to Cn+1.

12: if PQCB 6= ∅ then
13: Pop from PQCB elements K with −∆F−K within TOL of largest, add to CBn+1.

14: Exit.

where b is the depth of the 2D domain, which is often set as 1 for convenience purpose and hence k f =351

w2/12 [Khoei et al., 2014]. The enhanced effective permeability due to the presence of fracture k f is a352

rank-one tensor353

k f = k f t⊗ t. (19)

The total effective permeability can be idealized as the summation of the isotropic effective permeability354

of the host matrix and the anisotropic enhancement, i.e.,355

ktotal = khost + k f = kI + k f t⊗ t, (20)

where k is the magnitude of the effective permeability of the host. Note that cubic law is commonly used in356

adjunct to hydro-mechanical models that model fractures via embedded strong discontinuities (e.g. [Foster357

and Nejad, 2013, de Borst, 2016]) where the mechanical aperture can be computed easily. In the case where358

the cracks are represented by binary or regularized level set functions, a numerical algorithm must be used359

to keep track of the orientation and magnitude of the opening at each integration point of the finite element360

such that the proper permeability enhancement can be computed [Miehe and Mauthe, 2016].361

In this work, we propose two numerical algorithms designed specifically for the eigen-fracture model362

to estimate the hydraulic aperture and the orientation of the crack opening such that the enhanced effective363

permeability tensor can be estimated properly.364

3.2.1 Local hydraulic aperture algorithm365

To obtain the hydraulic aperture w and the orientation of the crack opening properly, one possible way366

is to project the element-wise binary indicator function onto a scalar field with sufficient smoothness (i.e.367

Co continuity), which we denoted as deroded. This field indicates the state of porous media by assigning368
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value 1 to completely eroded (fractured) material and value 0 to intact material. The simplest approach to369

construct this field in the eigen-erosion framework is setting deroded = 1 at all nodes of the eroded elements370

and deroded = 0 for the rest of the finite element nodes (cf. Fig. 4(a)).371

(a) Local scheme (b) Nonlocal scheme

Fig. 4: Determination of hydraulic aperture. Local and nonlocal projection of erosion field.

The resulting field may have gradient strongly depending on the finite element mesh size. As the mesh372

is refined, the gradient across the intact and broken domain may become sharper. However, since we only373

use the orientation of the gradient field to determine the aperture direction, the mesh sensitivity of the374

magnitude of the gradient field does not directly impose any difficulty. Furthermore, if the thickness of375

the crack is only of one element, then one may compute the enhanced permeability by computing the376

elongation along the orthogonal vector of this gradient field. We refer the numerical scheme based on this377

design as the ”local scheme” (cf. Algorithm 3). In this case, we consider that the direction n normal to378

the crack is always aligned with the gradient of the erosion field, i.e., n = ||∇deroded||. Since the field is379

constant inside the eroded element, the gradient inside the closest neighboring element is adopted if the380

finite element is surrounded by broken elements. The unit vector of the flow direction t is perpendicular to381

the direction vector n. An aperture line is then defined along the direction n intercepted by the integration382

(Gauss) point of the eroded element. The initial length of the aperture line is the distance between the383

intersection points of this line and the boundary of the eroded elements representing the crack. Meanwhile,384

the length after the crack opening is obtained using the deformed boundary of the eroded elements. The385

fracture aperture w is the difference between the deformed length and initial length. In this approach,386

we assume that the mechanical and hydraulic apertures are identical [Pyrak-Nolte et al., 1987, Renshaw,387

1995]. The obvious advantage of this algorithm that it is relatively easy to implement and applicable to388

both 2D and 3D cases. However, the major drawback is that the amount of energy dissipation of the pore-389

fluid is sensitive to the mesh size. As further demonstrated in the numerical examples of Section 4, this390

mesh sensitivity may have profound effect not only one the predicted hydraulic properties but also on the391

resultant crack and compaction band patterns, due to the hydro-mechanical coupling effects.392

3.2.2 Non-local hydraulic aperture algorithm393

Experimental studies have long confirmed that the mechanical aperture, defined as the distance between394

the two opposite faces of a crack, is not identical to the hydraulic aperture – the aperture used in the395

cubic laws. This discrepancy is commonly observed in experimental work on single-fracture flow and396

often attributed to the surface roughness, local tortuosity, contact area and the nonlinearity effect at high397

Reynolds numbers. Consequently, directly applying mechanical aperture in the cubic law generally leads398

to overestimation of Darcy’s velocity [Witherspoon et al., 1980, Pyrak-Nolte et al., 1987, Renshaw, 1995,399

Chen et al., 2000]. As a result, we design and introduce a nonlocal permeability model which incorporates400

the length scale of the hydraulic aperture, through an additional neighborhood zone (referred as hydraulic401

neighborhood εhydro herein) to distinguish the difference between the mechanical and hydraulic apertures.402
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Algorithm 3 Hydraulic aperture algorithm (local)

Require: Crack set Cn at time tn
Require: Erosion field deroded at time tn

1: for all elements K in Cn do
2: Compute gradient of erosion field: ∇deroded.
3: Compute aperture direction: n = ∇deroded

||∇deroded ||
.

4: Compute flow direction t: t ⊥ n.
5: Determine the two intersection points between the boundary of Cn. by drawing a line parallel to n

and intersected by the (Gauss) integration point p.
6: Compute fracture aperture w as the Euclidean distance between the two end points.
7: Compute fracture permeability k f via the cubic law.
8: Update total permeability: ktotal = khost + k f

9: return ktotal

In this second approach, we first project the discrete indicator function into a smooth field. In other words,403

the field deroded inside the ε-neighborhood region is obtained by solving the second-order Euler equation404

(cf. [de Borst and Verhoosel, 2016]):405

deroded − l2
hydro∆deroded = 0, (21)

with the boundary conditions that deroded = 0 for nodes at the boundary of the ε-neighborhood of the crack406

and deroded = 1 at all nodes of the eroded elements (cf. Fig. 4(b)). deroded = 0 outside the ε-neighborhood407

region. lhydro is the length scale parameter of hydraulic aperture. The normal direction n is determined408

from the average of gradients inside the neighboring elements. The hydraulic aperture is computed by:409

w = A lhydro n · ε · n, (22)

where A ∈]0, 1] is a material parameter related to the difference between the mechanical and hydraulic410

aperture, which we set it equal to 1 in the examples presented in Section 4. Note that the upper bound411

1 implies that the hydraulic aperture is equal or smaller than the mechanical aperture. This scheme is412

referred to as ”nonlocal scheme” (cf. Algorithm 4). Note that this erosion field resembles the phase field413

in the phase-field method. Subsequently, the total permeability tensor is obtained by ktotal = khost + k f ,414

where khost is the isotropic permeability tensor for intact porous matrix.415

In addition, for elements inside ”lhydro-neighborhood” of crack set C ( in analogy to ”ε-neighborhood”416

except that lhydro is the search radius), they possess reduced fracture permeability: d2
erodedk f . For each of417

these elements, an aperture line is defined by its integration point and the gradient of erosion field∇deroded.418

The element in C who has the minimum distance from the element center to the aperture line could be419

determined. Then the corresponding k f is used for reduced permeability calculation.420

3.2.3 Permeability reduction due to formation of compaction band421

If one assumes that the permeability reduction of the compaction band is isotropic inside the compaction422

band, then the reduction of effective permeability inside the compaction band can be captured by the423

Kozeny-Carman equation. The rationale behind this assumption is due to the fact that the compaction424

band, once it is formed, is idealized as an inclusion of isotropic elastic constitutive responses. Hence, we425

assume that the permeability reduction inside the compaction band is also isotropic for consistency. Note426

that the inclusion of the permeability reduction inside the compaction band may still lead to anisotropic427

hydraulic responses at the specimen scale. Improvement of constitutive law that better captures the in-428

duced anisotropy of permeability inside compaction band is an important task and will be considered429

in future study when further experiment evidence and meso-scale data becomes available. The Kozeny-430

Carman equation [Bear, 1972] relates the effective permeability k with the current void ratio e of porous431

media, i.e.,432

k =
d2

p

180µ

e3

(1 + e)2 , (23)
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Algorithm 4 Hydraulic aperture algorithm (regularized)

Require: Crack set Cn at time tn
1: H1 projection of erosion field deroded using a length parameter lhydro for hydraulic aperture ( Eq. 21 ).
2: for all elements K in Cn do
3: Compute gradient of erosion field: ∇deroded.
4: Compute aperture direction: n = ∇deroded

||∇deroded ||
.

5: Compute elongation along n: ε⊥ = n · ε · n
6: Compute aperture: w = lhydro · ε⊥
7: Compute fracture permeability k f via the cubic law.
8: Update total permeability: ktotal = khost + k f

9: for all elements within lhydro-neighborhood of Cn do
10: Get the closest element K in Cn and the corresponding fracture permeability k f .
11: Update total regularized permeability: ktotal = khost + d2

erodedk f .

12: return ktotal

where dp is the particle diameter and the coefficient
d2

p
180µ holds constant during deformation of the porous433

media. If the effective permeability takes the value k0 at the initial void ratio e0, k can be updated as:434

k =
( e3

1 + e
/

e3
0

1 + e0

)
k0. (24)

Assuming that the compressibilities of both the solid and fluid constituents are significantly higher435

than that of the solid skeleton, the change of the void ratio is a function of volumetric strain rate ε̇v, i.e.,436

ė ≈ e0(1 + e)2

1 + e0
ε̇v, (25)

which is obtained by considering the relationships among variables for porous media, i.e.,437

ė =
∂e
∂φ

φ̇ ; e =
φ

1− φ
; φ ≈ (1 + εv)φ0 (26)

where φ represents the porosity and φ0 is the initial porosity of the porous medium.438

Finally, it should be noted that it is possible to use the fracture model to impose a rank-one permeability439

reduction due to the compaction band.440

4 Numerical Examples441

In this section, we present three sets of numerical experiments designed to demonstrate the salient fea-442

tures of the proposed model and access the robustness and accuracy of the numerical schemes designed443

to replicate the onset and propagation of the compaction band and brittle fracture. In the first example,444

we simulate the hydro-mechanical coupling effect of solid deformation, fracture nucleation and induced445

fluid flow occurred in a notch specimen subjected to different combinations of tensile, shear and com-446

pression loads. By varying the prescribed loading, tensile fracture, mixed-mode fracture and compaction447

band/anti-crack are nucleated from the notches and propagate in different directions. By conducting the448

same simulations with different meshes, we assess the mesh sensitivity of the proposed scheme. In the449

second set of numerical simulations, we attend to simulate the borehole breakout problem commonly en-450

countered in the drilling process due to preferential rock failure. In particular, this example demonstrates451

the potential of using a unified framework to model compaction band and brittle fracture to analyze and452

predict the potential breakout. In the final set of numerical simulations, we simulate a series of injection453

simulations in homogeneous and heterogeneous porous media. The simulations showcase the ability of the454

unified eigen-erosion framework to capture the propagation and coalescence of fracture and compaction455
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band and the corresponding effects on the flow patterns due to the interaction of fracture and compaction456

bands. For simplicity, we assume that the elastic moduli of the compaction band as an inclusion and the457

host matrix are identical.458

4.1 Tension/compression shear tests on fluid-saturated double-edge-notched specimen459

In this first example, we investigate the onset and propagation of cracks and compaction bands inside a460

fluid-saturated specimen under different loading conditions. The geometry of the specimen is identical to461

the double-edge-notched specimen used in a Nooru-Mohamed shear experiment originally designed for462

analyzing mixed-mode fractures in concrete specimen [Nooru-Mohamed, 1992]. The specimen is assumed463

to be under the plane strain condition. The thickness of the specimen is 1000 mm. The domain and the464

boundary conditions, as well as a coarse and a fine mesh of 3-node triangular elements are all depicted in465

Fig. 5. The center of the specimen is constrained in X and Y directions to prohibit rigid body displacement.466

At the first loading step, a traction Ps is applied to the upper-left and lower-right edges of the specimen,467

with no crack or compaction band triggered. To replicate the experimental setup these two edges are main-468

tained to stay straight throughout the simulation via the usage of a Lagrangian multiplier. The loading rate469

is first set to be negligibly low so that the excess pore pressure built up inside the specimen is small com-470

pared to the applied loading to resemble a fully drained condition. Subsequently, the top and bottom edges471

are subjected to constant loading rate, while maintaining the same pressure Ps. The material parameters472

adopted in this example are recapitulated in Table 1.473

(a) Coarse mesh, 4 539 nodes, 8 992 elements (b) Fine mesh, 16 649 nodes, 33 200 elements

Fig. 5: Geometry, boundary condition and mesh

4.1.1 Effect of critical energy release rate of compaction band474

The first loading condition consists of 15 MPa pressure for constant shear load and a tensile loading strain475

rate of 0.0005 s−1 for both the top and bottom edges. As reported from the literature (e.g. Sternlof et al.476

[2005], Stanchits et al. [2009], the critical energy release for compaction band varies due to the difference477

in mineral composition, initial porosity and the types of materials. Nevertheless, previous studies have478

confirmed that the typically critical energy release rate for compaction band may range from 10 kJ/m2
479

to 80 kJ/m2 and is typically higher than the critical energy release rate of fracture. To analyze how the480

difference in the critical energy release rate of fracture and compaction affects the fracture and compaction481

band patterns, we run a simulation with material parameters all identical to the one reported in Table 1482

except the critical energy release rate is cut by half. Fig. 6 compare the predicted crack path with two critical483

energy release rate for compaction band while keeping the same critical energy release rate for fracture.484
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Parameter Value

Solid matrix Young’s modulus E 20 GPa
Solid matrix Poisson’s ratio ν 0.2

Critical energy release rate of crack GC 1 kJ/m2

Critical energy release rate of compaction band GCB 20 kJ/m2

Fluid bulk modulus K f 2.2 GPa
Solid particle bulk modulus K f 45 GPa

Initial porosity φ 0.25
Biot’s coefficient B 0.75
Biot’s modulus M 8 GPa

Intrinsic permeability κ 1e−13 m2

Dynamic viscosity µ 1e−3 Pa · s
Length scale parameter for crack εC = 0.005 m

Length scale parameter for anti-crack εCB = 0.005 m
Length scale parameter for hydraulic aperture lhydro = 0.0025 m

Table 1: Material parameters for double-edge-notched specimen

(a) GCB = 10 kJ/m2

(b) GCB = 20 kJ/m2

Fig. 6: Effect of compaction band on crack propagation.
Red: crack set; Blue: compaction band set.

In both cases, fracture forms after the normal traction on the top of the specimen reaches the maximum485

value. In the simulation where the critical energy release rate for compaction band GCB = 10 kJ/m2, the486

combination of shear and tensile load leads to the onset and propagation of cracks from the two notches.487

As the two cracks propagating from the left and right get close enough, the compressive stress near the488

crack tip increases and ultimately leads to the formation of compaction bands oriented orthogonal to the489

existing cracks. Since the stress field in the vicinity of the two crack tips is altered by the formation of490

compaction bands, the cracks stop extending away from each other, but tend to coalesce. In the other case491



Variational fracture and compaction band 17

in which GCB = 20 kJ/m2, two cracks simultaneously nucleate from the two notches and approach the492

specimen center, while no compaction band is initiated. With the presence of mixed shear-tensile loading493

condition, two cracks deviate from each other and follow inclined paths in the opposite directions. Results494

from this numerical experiment suggest the possible interactions between cracks and compaction bands495

when the critical energy release rate for these two Griffith-type flaws are close to each other. To the best496

knowledge of the authors, this is the first time the interactions between compaction band and fractures497

have been captured numerically.498

(a) (b) strain rate 0.0005 s−1 (c) strain rate 0.05 s−1

Fig. 7: Effect of tensile loading rate on crack propagation, Ps = 50 MPa. (a) Vertical reaction force vs. vertical
displacement on the top surface. (b) crack path at strain rate 0.0005 s−1. (c) crack path at strain rate 0.05 s−1.

4.1.2 Fluid-induced rate effects499

The pore fluid plays an important role in the mechanical behavior of fluid saturated porous media. Through500

the hydro-mechanical coupling, [Sun, 2013, Bésuelle and Rudnicki, 2003, Na and Sun, 2016], the solid skele-501

ton constitutive responses may appear to be rate dependent due to the diffusion of pore fluid, even though502

the solid skeleton itself does not exhibit any rate dependence. To investigate this fluid-induced effect on the503

crack propagation, we conduct two numerical simulations on the same specimen loaded under two differ-504

ent strain rates i.e. 0.0005 s−1 and 0.05 s−1. These strain rates are generated by moving the both top and505

bottom edges with equal-magnitude, opposite-direction velocity. In both simulations, the side-wall trac-506

tion remains Ps = 50 MPa throughout the numerical test. The load-displacement curve in Fig. 7 shows the507

force-displacement relation of the specimen subjected to the two different rates. Since a zero-pore-pressure508

boundary condition is prescribed at the top and bottom edges of the specimen, it is difficult to build up ex-509

cess pore pressure in the specimen unless a very high loading rate (relative to the hydraulic conductivity)510

is prescribed. Nevertheless, the hydro-mechanical effect may still manifest in multiple ways. As shown in511

Fig. 7(a), we observe that the specimen subjected to higher loading rate also appears slightly more stiff.512

Furthermore, even though we only employ rate-independent models to capture the elastic responses, the513

maximum normal force on the top is found to be sensitive to the loading rate. Finally, for the case where514

strain rate is 0.0005 s−1, the reaction force abruptly drops as the cracks evolve to the final configuration515

within one loading step. This global response differs from the high-strain-rate case in which softening can516

be observed when the top surface displacement is between 0.3 mm to 0.5 mm. The pore fluid also effect the517

predicted crack paths in the two cases, as shown in Fig. 7.518

Fig. 8 presents the pore pressure and Darcy velocity field predicted by the proposed algorithm for the519

fractured specimen. Note that the Darcy’s velocity plotted in Figs. 8 (c) and (d) are illustrated with a log-520

scale color scheme. When subjected to a high loading rate (two orders higher than the low-loading rate521

counterpart), the pore pressure built up within the specimen is also approximately of two orders higher522

than the low-loading-rate counterpart. The magnitude and direction of Darcy velocity also evolve as the523
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(a) strain rate 0.0005 s−1 (b) strain rate 0.05 s−1

(c) strain rate 0.0005 s−1

(d) strain rate 0.05 s−1

Fig. 8: Rate effect on the pore pressure and Darcy velocity distribution, Ps = 50 MPa. In both case, the
cracks acts as flow conduits.

cracks propagate. Water flows into the specimen in tension through the top and bottom boundaries where524

a pressure head is prescribed. The presence of cracks significantly alters the Darcy velocity field: water525

tends to flow into the cracks and are stored in the void space near the crack where the pressure plume526

located. The flow patterns demonstrated in Fig. 8 indicate that the cracks do behave like flow conduits527

which draws water by creating a fast pathway along the crack propagation direction.528

4.1.3 Mechanical and hydraulic apertures529

To demonstrate the necessity of adopting the ”nonlocal scheme” in computing hydraulic aperture for frac-530

tures, we conduct three simulations with different meshes such that a quantitative assessment of the mesh531
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dependency can be established. In this set of numerical experiments, the nonlocal scheme is applied on532

both coarse and fine meshes with the same εC, εCB and lhydro. Meanwhile, the local scheme is applied on533

fine mesh with the same εC and εCB, but the hydraulic aperture is assumed to be the same as the crack534

opening. The boundary conditions and material parameters used in these simulations are also identical.535

Fig. 9: Mesh dependency: reaction force vs. prescribed vertical displacement on top surface.

Fig. 9 shows the force-displacement curves obtained from the three simulations. These curves are all536

consistent with those of a brittle materials and their difference is minor. This indicates that the specimen-537

scale response is not very sensitivity to the meshes. However, a closer examination on the local responses,538

in particular, the predicted crack paths and the pore pressure field shown in Fig. 10 and Fig. 11 reveals539

that a pathological bias may occur when the local scheme described in Algorithm 3 is used to compute the540

hydraulic aperture. On the other hand, the coarse and fine meshes yield similar crack patterns and pore541

pressure field when the nonlocal scheme described in Algorithm 4 is used.542

(a) Coarse mesh (b) Fine mesh, nonlocal permeability (c) Fine mesh, local permeability

Fig. 10: Assessment of mesh dependency: crack path predicted by different meshes and local & nonlocal
hydraulic aperture algorithms.

These encouraging results are due to the usage of ε-neighborhood (for fracture) and lhydro-neighborhood543

(for permeability). Since both the size of the ε-neighborhood and lhydro-neighborhood are independent of544

the mesh size, these treatments allows the energy dissipation due to the crack propagation and fluid dif-545

fusion regularized by the length scales. Finally, it should be noted that it is possible to introduce a more546
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comprehensive phenomenological model to relate the hydraulic and mechanical apertures (e.g. Chen et al.547

[2000]). This research direction is out of the scope of this study but will be considered in the future.548

(a) Coarse mesh (b) Fine mesh, nonlocal permeability

(c) Fine mesh, local permeability

Fig. 11: Assessment of mesh dependency: fluid pressure predicted by different meshes and local & nonlocal
hydraulic aperture algorithms.

4.1.4 Shear effect on formation and propagation of compaction bands549

In order to initiate and propagate compaction bands, the specimen are compressed under constant shear550

stress Ps. The magnitude of shear stress effects the anti-crack paths, as shown in Fig. 12. Since the formation551

of compaction bands results in significant volume reduction compared to surrounding intact porous me-552

dia, the distribution of volumetric strain is used as the illustration of anti-crack configurations in the figure.553

Under low shear stress of Ps = 50 MPa, the anti-cracks nucleate from the two notches and propagate hor-554

izontally and finally merge with each other. With increasing Ps, compaction bands propagate towards the555

top and bottom edges. This example shows that the unified eigen-fracture scheme is capable of predicting556

curved compaction band paths.557

Fig. 13 demonstrated the direction and magnitude of Darcy velocity field right after the formation of558

compaction band in the cases where shear loads Ps = 50 MPa, 100 MPa, 120 MPa. As opposed to the cases559

shown in Fig. 8, the formation of compaction bands lead to a flow barrier in which the water inside the560

compaction band is squeezed out from the compaction band due to the porosity reduction. In all three561

cases, the Darcy velocity inside the specimen subjected to compression is much lower than the tensile-562

loading cases where crack propagates.563
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(a) Ps = 50 MPa (b) Ps = 100 MPa (c) Ps = 120 MPa

Fig. 12: Compaction bands developed inside the specimen during compressive-shear tests subjected to
shear loads Ps = 50 MPa, 100 MPa, 120 MPa, illustrated by volumetric strain εv contour.

(a) Ps = 50 MPa (b) Ps = 100 MPa (c) Ps = 120 MPa

Fig. 13: Flow barrier effect of compaction bands developed inside the specimen during compressive-shear
tests subjected to shear loads Ps = 50 MPa, 100 MPa, 120 MPa, as demonstrated by Darcy velocity field.

4.2 Fracture-like borehole breakout induced by compaction bands564

Borehole breakouts are stress-induced enlargements of the wellbore cross-section. The breakout phenom-565

ena have been observed in a number of drilling operations, such as breakouts in the Witwatersrand gold566

mine in South Africa [Leeman et al., 1964] and in the Exploratory Studies Facility below the Yucca Crest,567

Nevada [Wang and Elsworth, 1999]. In those cases, boreholes often elongate in the direction of the min-568

imum principal stress orthogonal to the borehole axis [Zheng et al., 1989]. While there are a number of569

conceptual models since the 80s to explain the breakouts as a mechanism due to ex-tensile or shear failure,570

(cf. Zoback et al. [1985], Haimson and Song [1993]), recent experimental work, such as Haimson [2001],571

Haimson and Lee [2004], Haimson [2007], have provided a substantial amount of evidence that the bore-572

hole breakout in high-porosity rock is due to a sequence of micro-mechanical events described as follows.573

1. The formation and propagation of compaction band orthogonal to the maximum principal stress direc-574

tion.575

2. Inside the compaction band, grain crushing and fragmentation causes porosity reduction and creates a576

narrow zone with compacted fine grains .577

3. If the flowing rate of the drilling fluid circulating inside the borehole is very high, then the drilling578

fluid may flushes out the fine grains inside the compaction band. Otherwise, the fine grains in the579

compaction band may be partially removed.580
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4. In the former case, the removal of the fine grains may cause the stress concentration moves and cause581

the breakout propagation. In the latter case, the partial removal of fine grains creates a weak layer that582

is vulnerable to fracture.583

5. If the flow rate is not high enough to cause the fine grains completely removed but high enough to build584

up excess pore pressure over time, then a fracture may emerge due to the hydro-mechanical coupling585

effect.586

In this example, our objective is to simulate the low-flow-rate case in which the fine grains in the com-587

paction band are not completely flushed out, but the compaction band is weakened due to the circulation588

of the drilling fluid, i.e., the un-emptied compaction band case as reported in [Katsman et al., 2009]. To589

simulate the propagation of the compaction band inside a drilled sandstone specimen, we construct an590

idealized 2D plane strain boundary value problem considers only half of a rectangular sandstone spec-591

imen of dimension 230 mm x 150 mm. A circular hole of radius 11.5 mm has been drilled through the592

sandstone. The drilled specimen is subjected to a confining pressure of σH = 100 MPa on the long side and593

σh = 40 MPa on the short side. The material properties of the specimen is identical to the ones shown in594

Table 1 with the following exceptions: E = 9.24 GPa; ν = 0.25; GC = 100 J/m2; GCB = 200 J/m2; κ = 1e−17
595

m2; εC = εCB = lhydro = 2 mm. To replicate the experimental procedure, the simulation is designed in two596

phases. In the first phase, we consider the plane-strain domain with the cylindrical borehole at the center597

subjected to an anisotropic far-field stress under fully drained condition. This lead to the development of598

compaction band. Following this, we change the boundary condition such that the drilling fluid begins599

to inject into the borehole and ultimately leads to the borehole breakout along the compaction band at a600

sufficiently low injection rate.601

4.2.1 Formation of compaction band602

At the first phase of the simulation, the presence of borehole under anisotropic far field stress induces the603

nucleation of the compaction band. Fig. 14 shows the evolution of the binary indicating function of the604

compaction band (blue color) in selected iteration steps used by the eigen-fracture algorithm to establish605

equilibrium. Sine we assume that the material remains in drained condition, these iteration steps are not606

correlated with the time steps. However, Fig. 14 does reveal that the compaction band does propagate607

along the minimum compressive stress direction, which is consistent with the experimental evidence in608

[Haimson and Lee, 2004]. This first simulation stage approximates the un-emptied compaction band con-609

figuration where the compacted and crushed grains are not evacuated into the borehole by the drilling610

fluid during the drilling process [Katsman et al., 2009]. The compaction band propagation demonstrated611

in Fig. 14 is also consistent with the evolution of the stress concentration location (see σyy field in Fig. 15).612

4.2.2 Fractures in compaction bands during fluid injection613

At the second stage, water is injected into the borehole to expand the previously formed compaction band.614

This is realized by discretizing the circular borehole by finite elements and idealizing the flow inside the615

borehole as a potential flow of incompressible fluid. For clarity, the mesh used to solve the fluid diffusion616

problem in the borehole is not shown in Fig.16.617

Since the grains inside the compaction band are damaged and further weakened by the partial removal618

of fine grains, we make a highly idealized assumption that the critical energy release rate for crack inside619

the compaction band is two orders smaller than those formed in the host matrix. Under this hypothesis,620

fluid will expand and then erode the compaction band elements, forming a crack along the anti-crack path.621

Notice that a more complete model for the borehole breakout must be able to capture the mass exchange622

between the intact host matrix and the fine grain suspension in the pore fluid as well as the changes of the623

elastic constitutive responses due to the removal of fine grains. These details are neglected in this study624

but will be considered in the future.625

Eventually, the configuration will be similar to the borehole breakout experiments [Haimson, 2001,626

Haimson and Lee, 2004], where highly compacted region lies ahead of the crack tip (c.f Fig. 16). Fig. 17627

shows the σyy field during crack propagation induced by injection of fluid and Fig. 18 illustrates the corre-628

sponding pore pressure fields at different time after the injection of water. As expected, the pore pressure629
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(a) Iteration 1 (b) Iteration 30 (c) Iteration 53

Fig. 14: First stage of borehole breakout simulation: the presence of borehole in a biaxial stress field induces
the onset and propagation of compaction band. The stable compaction band is formed after 53 iterations
of the anti-crack tracking algorithm (Section 3) within one time step. The compaction band configurations
at the 1st, 30th and 53th iteration are presented to show its propagation. Blue: compaction band set.

Fig. 15: Distribution of σyy (stress component along the maximum compressive stress σH) during the com-
paction band formation stage at the 1st, 30th and 53th iteration.

plume grows in the same direction of the crack. As the crack propagates inside the compaction band, the630

hydraulic aperture increases and this in return causes permeability significantly increases along the crack631

that was previously the low-permeability compaction band. Note that the assumption of reducing the com-632

paction band Gc in order to achieve this consistency is a significant simplified way to take account of the633

grain-removal process.634

4.3 Coalescence of cracks and compaction band inside a heterogeneous domain635

In this last example, we employ the unified eigen-erosion framework to predict the propagation and coa-636

lescence of fluid-driven fractures and compaction band in porous media. The interaction between nearby637

fractures may induce the onset and evolution of compaction bands. This phenomenon has not been ob-638

served in real-life field or laboratory experiments, while the numerical results may motivate research in639

this direction.640

We consider a boundary value problem with a water-saturated 20 m x 20 m square domain with three641

preexisting cracks under plane-strain condition. Fig. 19 presents the domain geometry and initial configu-642

ration of the cracks. All cracks have the initial length of 1.2 m, one is embedded horizontally at the domain643
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(a) t = 0.2 s after injection (b) t = 0.4 s after injection (c) t = 0.6 s after injection

Fig. 16: Second stage of borehole breakout simulation: crack of the compaction band upon injection of
water into the borehole (prescribed injection velocity vinject = 0.001 m/s at the center node of the borehole,
borehole mesh not shown). Crack advances along the anti-crack path, based on the assumption that the
grains compaction and crushing largely reduce the GC of porous matrix inside the compaction band, . Red:
crack set; Blue: compaction band set.

Fig. 17: Distribution of σyy (stress component along the maximum compressive stress σH) during crack
propagation induced by injection of fluid along the compaction band path.

center, the other two are oriented vertically 0.75 m apart from the ends of the horizontal crack. The sepa-644

ration between the vertical cracks is 2.7 m. As a result, the domain is symmetric with respect to the central645

Y-axis.646

In the numerical simulations, water is simultaneously injected into the three preexisting cracks through647

their centers with a prescribed Darcy velocity vinject, driving the cracks to propagate. The center square648

region of size 4 m x 4 m is discretized by 20,000 triangular elements of size hmin = 0.04 m. The remaining649

regions, which are far away from the interaction zone of the cracks, are discretized by larger finite elements650

as shown in Fig. 19. The displacement along the four edges of the square domain are constrained and the651

pore pressure is set to 0 Pa along these boundaries. The length scale for crack and compaction band are652

εC = εCB = 4hmin = 0.16 m, and the hydraulic length scale is lhydro = 2hmin = 0.08 m.653

To demonstrate the ability of the proposed model to simulate the propagation of cracks and compaction654

bands without any a priori knowledge of the propagation path, we introduce spatial heterogeneity by655

generating a random porosity field. Following this step, we then use empirical equations to relate the656

drained bulk and shear moduli as well as the critical energy release rate for fracture and compaction band657
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(a) t = 0.2 s after injection (b) t = 0.4 s after injection (c) t = 0.6 s after injection

Fig. 18: Distribution of pore pressure during crack propagation induced by injection of fluid along the
compaction band path.

Fig. 19: Embedded cracks (black lines) inside a water-saturated brittle elastic porous medium with ran-
domly generated porosity distribution.

to the porosity [Lee, 2005]. This treatment will gives us an idealized domain of heterogeneous material658

properties that solely depends on the spatial distribution of porosity.659

The heterogeneous porosity field used in the simulation is generated by an open-source multi-scale660

random field simulation program developed by Baker et al. [2011]. Our goal is to use this program as a661

code to generate heterogeneous domains. Since it is not our purpose to use the realizations to quantify662

the effect of the correlation length or the spatial variability via Monte Carlos simulations, the quality of663

the stochastic realizations and possible improvement of the random-field generation techniques generate664

non-Gaussian random field is not considered in this study.665

Furthermore, we use the mechanical and hydraulic properties of the porous rock specimen with poros-666

ity equals to 0.2 as the reference. The corresponding material parameters are listed in Table 2. To generate667

the heterogeneous domain, we idealized the porosity as a Gaussian random field and set the porosity668

ranging from 0.1 to 0.3, with mean value of φ0 = 0.2. A coarse-scale field is first generated with spatial cor-669

relation for the 20 m x 20 m domain and the field inside the region of interest of 4 m x 4 m is then refined670

[Baker et al., 2011]. The resulting porosity field is presented in Fig. 19. The mean value of the resultant671

porosity field is 0.197 and the standard deviation is 0.0451. With the initial porosity determined, we then672

obtain the rest of the mechanical and hydraulic material parameters via empirical or phenomenological673
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Parameter Value

Solid matrix Young’s modulus E 33.68 GPa
Solid matrix Poisson’s ratio ν 0.17
Critical energy release rate GC 100 Pa ·m
Solid grain bulk modulus Ks 38 GPa

Fluid bulk modulus K f 2.2 GPa
Biot’s coefficient B 0.55
Biot’s modulus M 9.9 GPa

Reference permeability κ at 0.2 porosity 1e−15 m2

Dynamic viscosity µ 1e−3 Pa · s

Table 2: Material parameters for Example 4.3 (porosity φ = 0.2)
.

relations. For instance, The bulk modulus Kφ and the shear modulus Gφ of rock are related to the porosity674

φ by the empirical equations in Lee [2005]:675

Kφ =
Kquartz(1− φ)

1 + αφ

Gφ =
Gquartz(1− φ)

1 + γαφ
,

(27)

where the modulus of quartz Kquartz = 38 GPa and Gquartz = 44 GPa, α is a parameter that represents the676

degree of consolidation between grains (α = 4 in this example) and γ = 1+2α
1+α . The intrinsic permeability677

depends on the porosity φ by the Kozeny–Carman equation, i.e. κφ = κφ0
φ3

(1−φ)2 where κφ0 = 8× 10−14 m2
678

and κφ = 10−15 m2 when porosity φ = 0.2. As for the critical energy release rate for cracks and anti-cracks,679

they are assumed to follow the power law [Dunn et al., 1973]:680

GCφ

GCφ0

=
φnC

φ
nC
0

;
GCBφ

GCBφ0

=
φnCB

φ
nCB
0

. (28)

In this example, GCφ0
= GCBφ0

= 100 Pa ·m at the reference porosity φ0, and the parameters nC = nCB =681

−1. Note that the pressure-dependent rock property and plasticity are not considered in the current simu-682

lation.683

4.3.1 Fluid-driven fractures in heterogeneous domain684

To investigate the effect of the heterogeneity of the porosity field on fluid-driven fracture process, a simu-685

lation is firstly performed on homogeneous field with a constant porosity φ0 = 0.2 and the corresponding686

homogeneous material properties as a control experiment. The fluid injection velocity is vinject = 0.00025687

m/s and the time step is 0.1 s. GCB is set to be 20 kJ/m2 and no anti-crack is generated during the process.688

Fig. 20 depicts the evolution of fluid pressure field. Due to the symmetry of the boundary value problem,689

all crack tips of the three cracks advance in straight lines until the cracks coalesce. The pore pressure in-690

side the horizontal crack is lower than the pore pressure in vertical cracks. This may be attributed to the691

higher crack propagation speed of the horizontal crack, which reduces the amount of pore pressure built692

up due to enhancement of permeability along the crack as shown in Fig. 20(a). At t = 3 s, the center crack693

join the vertical cracks at their centers, and the pressure values in the three cracks become nearly identical694

while the pore pressure plumes originated from the boundaries of the three cracks also joined together to695

form a single boundary layer domain. This hydromechanical interaction in return causes the crack paths of696

the vertical cracks to incline. The resultant final crack pattern is consistent with previous results from the697

crack-coalescence simulations in porous media via the phase field approach [Wheeler et al., 2014, Miehe698
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and Mauthe, 2016]. As a comparison, the simulation runs again with the identical setting except that the ho-699

mogeneous porosity field is now replaced by the heterogeneous counterpart. With the same flow injection700

rate, the pore pressure of the heterogeneous domain at t = 2 s, 3 s, 5 s are shown in Fig. 21 for comparison. In701

this case, all cracks tend to propagate towards regions where porosity is higher. The final fracture pattern702

differs significantly from the homogeneous counterpart. The main reason for this discrepancy is that the703

drop of GC with increasing porosity facilitates the crack propagation, and this factor dominates the effects704

of the other porosity-dependent material properties.705

(a) t = 2 s (b) t = 3 s (c) t = 5 s

Fig. 20: Fluid driven propagation and coalescence of fractures in homogeneous porosity field. vinject =
0.00025 m/s. Fluid pressure at t = 2 s, 3 s, 5 s.

Due to the enhanced permeability along the crack, the pore pressure inside the crack is of similar mag-706

nitude. However, the boundary layer of the pore pressure plume grows in time and eventually coalesces707

at 5s.708

(a) t = 2 s (b) t = 3 s (c) t = 5 s

Fig. 21: Fluid driven propagation and coalescence of fractures in heterogeneous porosity field. vinject =
0.00025 m/s. Fluid pressure at t = 2 s, 3 s, 5 s.

4.3.2 Influence of injection rate709

Next we study the influence of the fluid injection rate on fracture patterns. vinject is raised by ten times710

to 0.0025 m/s for an additional simulation on the heterogeneous porosity field. To compare the results,711

the pore pressure field at t = 0.2 s, 0.3 s and 0.5 s are presented in Fig. 22, so that the amount of fluid712
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injected into the domain are kept identical to those at t = 2 s, 3 s and 5 s of the low-injection-rate case. In the713

analytical framework introduced by Adachi and Detournay [2008], the change of injection may affect the714

values of the dimensionless toughness coefficient K ∝ ( 1
Q0

)
1
4 and the leak-off coefficient C ∝ ( t

Q3
0
)

1
6 , where715

Q0 being the injection flux rate [Adachi and Detournay, 2008]. In particular the increase of the prescribed716

Darcy velocity vinject may lead to lower K, which means that a lower ratio of energy rate is expended in717

fracturing compared to the fluid viscous dissipation, and also a lower value of C, which indicates that718

the fracture propagation takes longer time to transit from no-leak-off to leak-off dominated regime. These719

predictions from the analytical model is consistent with our numerical results shown in Figs. 21 and 22.720

In the high-injection-rate case, the increased injection velocity results in sharper pore pressure gradient721

across the crack and the surrounding host matrix. The pressure concentration zone becomes thinner and722

leak off is less profound compared to the low-injection-rate counterpart shown in Fig. 21. The increased723

injection rate does not only lead to a more storage-dominated behavior, but also alters the crack pattern.724

As shown in Fig. 22, the higher injection rate allows more excess pore pressure build up and the negative725

pore pressure near the tip of the cracks are also more significant. Through the hydro-mechanical coupling726

effect, this leads to a slightly different crack patterns compared with Fig. 21.727

(a) t = 0.2 s (b) t = 0.3 s (c) t = 0.5 s

Fig. 22: Fluid driven propagation and coalescence of fractures in heterogeneous porosity field. vinject =
0.0025 m/s. Fluid pressure at t = 0.2 s, 0.3 s, 0.5 s.

4.3.3 Interaction of compaction bands and fractures728

Since a portion of the injected fluid will be stored inside the cracks when the permeability is low, it will729

expand the fracture and compress the surrounding porous matrix. For material with low GCB, this could730

lead to the formation of compaction band in the vicinity of the fracture. This is consistent with the results731

of the simulations performed on a heterogeneous porosity field with GCB = 0.1 kJ/m2 at reference porosity732

φ0 = 0.2 (Fig. 23). Before propagation of the embedded fractures, anti-crack nucleates in the vicinity of one733

tip of the horizontal crack that lies in high porosity area. It propagates rapidly towards the other tip of the734

horizontal crack following a curved path. The path represents the region where maximum compressive735

strain takes place. Anti-crack branching and coalescence is observed in Fig. 23.736

The onset of anti-crack could be postponed as the material GCB is increased. GCB = 2 kJ/m2 at reference737

porosity φ0 is adopted in the new simulation and Fig. 24 illustrates the compaction band evolution. The738

compaction band (anti-crack) this time appears after the coalescence of the left and center fractures. It739

is formed underneath the joint compression of these two expanding cracks. Again the compaction band740

exhibits branching, with one branch extending rapidly towards the other tip of the center crack, and the741

other branch connecting the tip of the left crack. Notice that in this work we assume the compaction band is742

formed in a brittle manner. Hence, the compaction band formed almost spontaneously following the peak743

loading. As a result, the crack patterns shown in Figs. 23 and 24 are formed within one single time step in744

which the nonlocal eigen-erosion scheme is used to search for a new equilibrium in this particular case.745
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(a) Iteration 10 (b) Iteration 30 (c) Iteration 50

Fig. 23: Onset and propagation of compaction band near pressurized fractures in heterogeneous porosity
field. GCB = 0.1 kJ/m2 at reference porosity φ0 = 0.2. vinject = 0.00025 m/s. Compaction band starts to
form and propagate at time t = 0.2 s. The configurations at 10th, 30th, 50th iteration of anti-crack tracking
algorithm at time t = 1.8 s are presented to illustrate the evolution of compaction band path. Red: crack set;
Blue: compaction band set.

(a) Iteration 10 (b) Iteration 30 (c) Iteration 50

Fig. 24: Onset and propagation of compaction band near pressurized fractures in heterogeneous porosity
field. GCB = 2 kJ/m2 at reference porosity φ0 = 0.2. vinject = 0.00025 m/s. Compaction band starts to
form and propagate at time t = 1.8 s. The configurations at 10th, 30th, 50th iteration of anti-crack tracking
algorithm at time t = 1.8 s are presented to illustrate the evolution of compaction band path. Red: crack set;
Blue: compaction band set.

Altogether this series of simulations of fluid-driven fracture coalescence demonstrate the capability746

and potential of the unified eigen-erosion model in predicting complex crack and anti-crack patterns in747

large-scale geomechanics and geoenvironmental problems.748

5 Conclusion749

As point out in Holcomb et al. [2007], the existing computational model has not yet progressed to the point750

to analyze the influence of fluid flow on the formation and propagation of compaction band. Nor is it751

clear how does the compaction band and cracks interact in various drainage conditions. This work is in-752

tended to fill these knowledge gaps with important implications for petroleum engineering, reservoir man-753

agement and geological disposals of nuclear waste and carbon dioxide storage. By introducing a unified754

Griffith-type variational framework capable of simulating the onset, propagation and coalescence of both755

fracture and compaction bands as Griffith-type flaws in fluid-infiltrating porous media. This is achieved756
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without (1) requiring any prior knowledge on the fracture and compaction band patterns and (2) introduc-757

ing any nodal variables such as phase field. By associating the eigen-deformation modes of fracture and758

compaction bands with the corresponding fracture and compaction band energy functionals, the interplay759

between the fracture and compaction band are captured in the numerical examples. In addition, we have760

introduced a nonlocal algorithm to capture the evolving anisotropic effective permeability and circumvent761

the mesh dependence demonstrated commonly in the element erosion approach. Consequently, the numer-762

ical model exhibits the similar advantages of variational fracture and phase-field fracture model, without763

introducing any additional degree of freedoms to represent fractures and compaction bands. This simplic-764

ity greatly reduces the complexity of the solver and allows one to implement the fracture and compaction765

band models as nonlocal constitutive laws coupled with the classical field equations for poromechanics.766

Our numerical examples also demonstrate that the proposed model has good rate of convergence, even767

without any adaptive mesh refinement.768
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7 Appendix: Finite element formulation of the hydraulic fracture in saturated porous media778

One of the major advantages of the proposed approach is that there is no need to change the field equa-779

tion, as well as the corresponding weak, Galerkin and matrix form of the hydro-mechanics model. The780

introduction of regularized element erosion can be regarded simply as non-local solid and hydraulic con-781

stitutive laws employed in standard mixed finite element formulation for poromechanics problem. As a782

result, the formulation of the stabilized finite element model used in this paper is only included here for783

completeness. Readers interested at the details of theory and implementation of the u/p formulation may784

refer to Sun et al. [2013, 2014], Sun [2015], Wang and Sun [2016a,b].785

To construct the macroscopic hydro-mechanical boundary-value problem, consider a porous media786

domain B with its boundary ∂B composed of Dirichlet boundaries (solid displacement ∂Bu, pore pressure787

∂Bp ) and Von Neumann boundaries (solid traction ∂Bt , fluid flux ∂Bq ) satisfying788 {
∂B = ∂Bu ∪ ∂Bt = ∂Bp ∪ ∂Bq

∅ = ∂Bu ∩ ∂Bt = ∂Bp ∩ ∂Bq
(29)

The prescribed boundary conditions are789 
u = u on ∂Bu

σ · n = t on ∂Bt

p f = p on ∂Bp

−n ·Q = Q on ∂BQ

(30)

where n is outward unit normal on surface ∂B.790

For model closure, the initial conditions are imposed as791

p f = p f
0 , u = u0 at t = t0 (31)
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Following the standard procedures of the variational formulation, the weak form of the balance of792

linear momentum, fluid mass in intact porous medium and fluid mass in fracture are:793

G : Vu ×Vp ×Vη → R

G(u, p f , η) =
∫
B
∇η : (σ′ − Bp f I) dV−

∫
∂Bt

η · t dΓ = 0 (32)

H : Vu ×Vp ×Vψ → R

H(u, p f , ψ) =
∫
B

ψB∇ · u̇ dV +
∫
B

ψ
1
M

ṗ f dV

−
∫
B
∇ψ · [k · (−∇p f )] dV

−
∫

∂BQ

ψQ dΓ = 0 (33)

H′ : Vu ×Vp ×Vψ → R

H(u, p f , ψ) =
∫
B

ψ∇ · u̇ dV +
∫
B

ψ
1

K f
ṗ f dV

−
∫
B
∇ψ · [k f · (−∇p f )] dV

−
∫

∂BQ

ψQ dΓ = 0 (34)

The displacement and pore pressure trial spaces for the weak form are defined as794

Vu = {u : B → R3|u ∈ [H1(B)]3, u|∂Bu = u} (35)
795

Vp = {p f : B → R|p f ∈ H1(B), p f |∂Bp = p} (36)

and the corresponding admissible spaces of variations are defined as796

Vη = {η : B → R3|η ∈ [H1(B)]3, η|∂Bu = 0} (37)
797

Vψ = {ψ : B → R|ψ ∈ H1(B), ψ|∂Bp = 0} (38)

H1 denotes the Sobolev space of degree one, which is the space of square integrable function whose weak798

derivative up to order 1 are also square integrable.799

The spatially discretized equations can be derived following the standard Galerkin procedure. Shape800

functions Nu and Np are used for approximation of solid motion u, u̇ and pore pressure p f , ṗ f , respectively:801 {
u = Nuū, u̇ = Nu ˙̄u, η = Nuη̄

p f = Np p̄ f , ṗ f = Np ˙̄p f , ψ = Npψ̄
(39)

with ū being the nodal solid displacement vector, p̄ f being the nodal pore pressure vector, ˙̄u, ˙̄p f being their802

time derivatives, and η̄, ψ̄ being their variations. The gradient of the shape functions are Bu = 1
2 (∇Nu +803

∇Nu
T) and Bp = ∇Np.804

The adopted 2D four-node quadrilateral element interpolates the displacement and pore pressure field805

with the same order Nu = Np. This combination does not inherently satisfy the inf-sup condition [White806

and Borja, 2008]. Therefore a stabilization procedure is necessary. In this study, the fluid pressure Laplacian807

scheme is applied. This scheme consists of adding the following stabilization term to the balance of fluid808

mass equation:809 ∫
B
∇ψ αstab ∇ ṗ f dV (40)
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with αstab a scale factor depending on element size and material properties of the porous media [Truty and810

Zimmermann, 2006].811

The semi-discretized finite element equations for balance of linear momentum and balance of fluid812

mass in intact porous medium are written as:813 {
G(u, p f , η) = 0

H(u, p f , ψ) = 0
=⇒

{
Kuū− Kup p̄ f = F1

ext

C1 ˙̄u + (C2 + Cstab) ˙̄p f + Kp p̄ f = F2
ext

(41)

The expressions for each matrices and vectors are as following, assuming linear elastic behavior of the814

solid skeleton with De being the material stiffness matrix:815



Ku =
∫
B

Bu
TDeBudV

Kup =
∫
B

BBu
TmNpdV

C1 =
∫
B

BNT
p mTBudV

m = [110]Tin 2D

C2 =
∫
B

1
M

NT
p NpdV

Cstab =
∫
B

Bp
TαstabBpdV

Kp =
∫
B

Bp
TkBpdV

F1
ext =

∫
∂Bt

Nu
TtdΓ

F2
ext =

∫
∂BQ

Np
TQdΓ

(42)

For elements representing the fracture in porous medium, the matrix equations are similar, with B = 1,816

M = K f and k = k f .817

The equation system (41) can be rewritten in a compact form:818

Mv + Kd = Fext (43)

where M =

[
0 0

C1 (C2 + Cstab)

]
, v =

{
˙̄u

˙̄p f

}
, K =

{
Ku −Kup

0 Kp

}
, d =

{
ū
p̄ f

}
and Fext =

{
F1

ext
F2

ext

}
.819

The transient equation is integrated implicitly in time using the predictor-corrector scheme based on820

the generalized trapezoidal rule. It consists of satisfying the equation (43) at time tn+1:821

Mvn+1 + Kdn+1 = Fext
n+1 (44)

with the solution822

dn+1 = d̃ + α∆tvn+1 (45)

where the subscripts n and n + 1 denote that the variables are evaluated at time tn and tn+1, respectively;823

∆t is the time step; α is the integration parameter. d̃ = dn + (1− α)∆tvn is referred to as the predicted824

solution. The corrector step consists of solving the vn+1 by:825

(M + α∆tK)vn+1 = Fext
n+1 − Kd̃ (46)

and compute the corrected dn+1 by (45).826
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