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ABSTRACT 

Multiscale Modeling of Granular Materials 

Yang Liu 

Granular materials have a “discrete” nature whose global mechanical behaviors are 

originated from the grain scale micromechanical mechanisms. The intriguing properties 

and non-trivial behaviors of a granular material pose formidable challenges to the 

multiscale modeling of these materials.  Some of the key challenges include upscaling of 

coarse-scale continuum equation form fine-scale governing equations, calibrating 

material parameters at different scales, alleviating pathological mesh dependency in 

continuum models, and generating unit cells with versatile morphological details. This 

dissertation aims to addressing the aforementioned challenges and to investigate the 

mechanical behavior of granular materials through multiscale modeling.  

Firstly, a three-dimensional nonlocal multiscale discrete-continuum model is 

presented for modeling the mechanical behavior of granular materials. We establish an 

information-passing coupling scheme between DEM that explicitly replicates granular 

motion of individual particles and a finite element continuum model, which captures 

nonlocal overall response of the granular assemblies. Secondly, a new staggered 

multilevel material identification procedure is developed for phenomenological critical 

state plasticity models. The emphasis is placed on cases in which available experimental 

data and constraints are insufficient for calibration. The key idea is to create a secondary 

virtual experimental database from high-fidelity models, such as discrete element 

simulations, then merge both the actual experimental data and secondary database as an 

extended digital database to determine material parameters for the phenomenological 

macroscopic critical state plasticity model. This expansion of database provides 

additional constraints necessary for calibration of the phenomenological critical state 

plasticity models.  



 

 

Thirdly, a regularized phenomenological multiscale model is investigated, in which 

elastic properties are computed using direct homogenization and subsequently evolved 

using a simple three-parameter orthotropic continuum damage model. The salient feature 

of the model is a unified regularization framework based on the concept of effective 

softening strain. The unified regularization scheme is employed in the context of 

constitutive law rescaling and the staggered nonlocal approach to alleviate pathological 

mesh dependency. Lastly, a robust parametric model is presented for generating unit cells 

with randomly distributed inclusions. The proposed model is computationally efficient 

using a hierarchy of algorithms with increasing computational complexity, and is able to 

generate unit cells with different inclusion shapes.  
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Chapter 1  

Introduction 

The introductory chapter presents a general introduction and outline of this dissertation.  

Granular materials are ubiquitous in nature and industries, such as geophysics, 

geotechnical engineering, architecture, pharmaceutical and energy production. They 

surround our day-to-day life in various forms with the grains size as small as powder, 

sand, rice and coal, to sizes as large as icebergs and asteroids (see Figure 1.1).  

A Granular material consists of solid particles, voids and interstitial air and/or liquid. 

Due to its amorphous structure, granular media can exhibits states as solid-like (quasi-

static), liquid-like (granular flow) or gas-like. It can also switch its behavior from one 

state to another. In fact, many characterize granular materials as a new phase of matter 

due to its unique behaviors in each of these states, which are different from that of 

ordinary solids, liquids or gases. The intriguing properties and non-trivial behaviors of 

such an unusual form of matter have drawn physicists’ interests.  

             

Figure 1.1 Examples of typical granular materials: medicine manufacturing, sand 

dune, civil infrastructure engineering, etc. 
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(a) (b) (c) 

Figure 1.2 Examples of accidents caused by granular material system failure: (a) 

landslide spurred by 1991 El earthquake, (b) avalanches, and (c) collapse of a silo 

In addition to the academic curiosity, the study of granular behavior is also 

motivated by practical needs.  One of the arduous issues in practice is the failure of a 

granular system, for instance, landslides, snow avalanches and collapse of granular 

containers, as shown in Figure 1.2 for a few among many other examples. The failure of 

granular systems could cause severe economic loss and casualties. For example, the 

transportation infrastructure is at risk of landslides in many areas worldwide [1]. An 

estimate of the total annual cost of landslide damage in the United States is in excess of 

one billion USD [2], which makes landslide one of the most costly natural disasters. 

Indeed, the pressing demand for resolving these practical issues, as well as the interests in 

encoding the physics behind many of the peculiar behaviors of granular materials, 

accelerated the development of predictive models capable of predicting the collective 

behavior of granular materials.  

The development of predictive and robust models for granular materials remains a 

formidable challenge. Continuum theories, both classical [3] and generalized ones [4], 

have been widely applied for the analysis of granular behavior in engineering length scale 

by invoking nonlinear phenomenological models, such as elasticity [5], plasticity [6-8] 

and elastoplasticity [9-17]. In phenomenological models, granular materials are 
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fundamentally treated as continua with material parameters being fitted to match the 

experimental data. The phenomenological models are able to capture many of the salient 

features of granular media, for instance, shear-dilatancy effects, stress-path dependency, 

pressure sensitivity, fabric anisotropy, liquefaction and cyclic mobility.  Therefore, 

continuum approach remains the most widely used approach due to its versatility and 

efficiency. However, limitations of the continuum approach become evident when 

dealing with problems of increasing complexity, such as deformation bands [18, 19], 

landslides [20], and coupled thermo-hydro-chemo-mechanical processes during 

radioactive disposal [21], etc. Terzaghi [22] reflected on the very existence of this 

problem in soil mechanics and envisioned that:   

“The way out of the difficulty lies in dropping the old fundamental principles and 

starting again from the elementary fact that the sand consists of individual grains.”  

Micromechanics of granular materials, as an emerging discipline, was established to 

understand granular behavior from its most basic constituents, i.e. grains [23, 24]. First 

proposed by Cundall and Stack [25], the discrete (distinct) Element Methods have been 

extensively used to investigate micromechanical features of the granular assemblies. The 

widespread adoption of DEM in micromechanical analysis for granular materials has 

been has been reported in [26-29] including successful utilization in practice [30, 31]. 

Nevertheless, resolving kinematics of individual grains comes with the price of 

insurmountable computational cost for larger systems and longer simulation times. On 

the experimental side, over the past few years we have witnessed an explosion in the use 

of high-resolution tomographic techniques, which has enabled 2D and 3D measurements 

of microstructure, contact forces, and grain kinematics of natural geomaterials, and 

allowed for an increased understanding of the observed phenomena at the macroscale [32, 

33]. As we gain more understanding at a granular scale from both advanced experimental 

measurements and DEM simulations, a key challenge that remains is to develop models 

that can accurately and efficiently predict the behavior of granular materials by 

integrating information at multiple scales.  
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Multiscale methods have emerged in mechanics to bridge different spatial and 

temporal scales [34]. Numerical methods for solving the representative volume element 

(RVE) problem, also known as computational homogenization methods, have been 

employed to derive overall behavior of heterogeneous media [35-39] (i.e. composite 

materials, polymers, metallic polycrystal, mixture of fluids) from the knowledge of fine-

scale constituents with various types of boundary conditions. Remarkably, some efforts 

are being made lately to obtain realistic models for granular materials based on multiscale 

philosophy [40-50]. For instance, Wellmann and Wriggers [48] introduced an Arlequin 

DEM-FEM model that divides the spatial domain into discrete, continuum and 

overlapping subdomains. Li and Wan [51] and Regueiro and Yan [47] proposed bridging 

scale method which uses a handshake domain to couple particulate model with higher-

order continua. 

The homogenization-based multiscale discrete-continuum coupling formulation links 

the discrete representation with a continuum formalism at a finite strain. Miehe et al. [42, 

46] extended Hill-Mandel microhomogeneity condition from continuous heterogeneous 

systems to granular media. Stránský and Jirásek [52] , Nguyen et al. [53] and Guo and 

Zhao [50] proposed a conceptually similar approach where homogenized stress measures 

and the tangent operator inferred from periodic discrete element simulations conducted 

on a representative volume element (RVE) are directly used to update an otherwise 

conventional small strain implicit finite element model [34, 54-56]. Andrade and Tu [45] 

proposed a staggered multiscale constitutive model in which evolutions of the yield 

surfaces and plastic potential are governed by DEM simulations or meso-scale 

experiments. 

These methods have been successful to capturing most of the characteristic behavior 

of granular materials. Nevertheless, the application of multiscale modeling to granular 

materials is still in its embryonic stage due to the multidisciplinary nature of the problem, 

high computational cost and pathological mesh dependency [50]. Increasingly higher 

demands for predictive and efficient models continue posing challenges for numerical 
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modeling of granular materials, many of which have not been overcome. These include 

but not limited to: 

1) How to derive macroscopic continuum equation from a fine-scale discrete 

governing equation? 

2) How to obtain good set of material parameters across different scales that can 

represent the overall behavior of granular material, such as sand? 

3) How to alleviate mesh size dependency when using continuum models? 

4) How to efficiently generate unit cells with versatile morphological details? 

 

1.1 Dissertation outline 

This dissertation focuses on the investigation of resolving the aforementioned issues by 

developing efficient predictive multiscale methods capable of realistic modeling of the 

mechanical behavior of granular materials. The first two chapters (Chapters 2 and 3) are 

the central theme of the research work, followed by two supporting chapters (Chapters 4 

and 5) for detailed demonstration of the proposed methods. The following summarizes 

the outline of this dissertation: 

 Chapter 2: This chapter presents a three-dimensional nonlocal multiscale discrete-

continuum model for modeling mechanical behavior of granular materials. In the 

proposed multiscale scheme, we establish an information-passing mechanism 

between the discrete element method (DEM), which explicitly replicates granular 

motion of individual particles, and a finite element continuum model, which 

captures nonlocal macroscopic response of the granular assemblies. The resulting 

multiscale discrete-continuum coupling method retains the simplicity and efficiency 

of a continuum-based finite element model while circumventing mesh pathology in 

the post-bifurcation regime by means of a staggered nonlocal operator. We 

demonstrate that the multiscale coupling scheme is able to capture the plastic 

dilatancy and pressure-sensitive frictional responses commonly observed inside 

dilatant shear bands, without employing a phenomenological plasticity model at a 
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macroscopic level. In addition, internal variables that govern path dependent 

behaviors, are now inferred directly from granular physics, without introducing 

unnecessary empirical relations and phenomenology. Simple shear and biaxial 

compression tests are used to analyze the onset and evolution of shear bands in 

granular materials and sensitivity to mesh density. The robustness and accuracy of 

the proposed multiscale model are verified in comparisons with single-scale 

benchmark DEM simulations. 

 Chapter 3: This chapter presents a new staggered multilevel material identification 

procedure for phenomenological critical state plasticity models. The emphasis is 

placed on cases in which available experimental data and constraints are insufficient 

for calibration. The key idea is to create a secondary virtual experimental database 

from high-fidelity models, such as discrete element simulations, then merge both the 

actual experimental data and secondary database as an extended digital database to 

determine material parameters for the phenomenological macroscopic critical state 

plasticity model. The calibration procedure therefore consists of two steps. First, the 

material parameters of the DEM simulations are identified via the standard 

optimization procedure. Then, the calibrated DEM simulations are used to expand 

the experimental database with new simulated loading histories. This expansion of 

database provides additional constraints necessary for calibration of the 

phenomenological critical state plasticity models. The robustness of the proposed 

material identification framework is demonstrated in the context of the Dafalias-

Manzari critical state plasticity model. 

 Chapter 4: This chapter presents a regularized phenomenological multiscale model 

where elastic properties are computed using direct homogenization and 

subsequently evolved using a simple three-parameter orthotropic continuum damage 

model. The salient feature of the model is a unified regularization framework based 

on the concept of effective softening strain. The unified regularization scheme has 

been employed in the context of constitutive law rescaling and the staggered 

nonlocal approach. We show that an element erosion technique for crack 
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propagation when exercised with one of the two regularization schemes (i) 

possesses a characteristic length, (ii) is consistent with the fracture mechanics 

approach, and (iii) does not suffer from pathological mesh sensitivity. 

 Chapter 5: This chapter presents a parametric model for generating unit cells with 

randomly distributed inclusions. The proposed algorithm possesses (i) robustness by 

yielding unit cells with inclusion volume fraction of up to 78%, (ii) computationally 

efficiency accomplished through a hierarchy of algorithms with increasing 

computational complexity, and (iii) versatility by generating unit cells with different 

inclusion shapes. A statistical study aimed at determining the effective size of the 

unit cell is conducted. The method has been applied to various random inclusion 

microstructure composites including: (i) polyurea or polyethene coating consisting 

of hard and soft domains (segments) employed for energy absorption in military and 

industrial applications, and (ii) fiber framework called fiberform embedded in an 

amorphous matrix used as heat shield on space crafts to prevent structural damage 

during reentry into the atmosphere. 
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Chapter 2  

A Nonlocal Multiscale Discrete-Continuum 

Model for Predicting Mechanical Behavior of 

Granular Materials 

In this chapter, a three-dimensional nonlocal multiscale discrete-continuum model is presented for 

modeling the mechanical behavior of granular materials. We establish an information-passing coupling 

between DEM, which explicitly replicates granular motion of individual particles, and a finite element 

continuum model, which captures nonlocal overall response of the granular assemblies. This chapter is 

reproduced from the paper co-authored with Waiching Sun, Zifeng Yuan and Jacob Fish, which was 

accepted for publication in the International Journal for Numerical Methods in Engineering [57]. 

2.1 Introduction 

While the macroscopic response of granular materials may appear to be similar to that of 

continua, it essentially represents a collective behavior of interacting particles. For 

example, the rearrangement and crushing of particles, collapse of void space, buckling 

and splitting of force chains may result in path dependent behaviors at macroscopic scale, 

such as plastic dilatancy and contraction, non-associative plastic flow and strain 

localization.   

Over the last three decades, computer simulations of granular motion have gained 

increasing attention. Several classes of models have been proposed to replicate the 

behaviors of granular media including:  
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(i)  discrete approaches that explicitly model the particulate interactions among 

particle contacts at the grain scale, 

(ii)  continuum approaches that characterize path dependent responses with internal 

variables and constitutive laws at macroscopic scales, and  

(iii) multiscale approaches that concurrently or by means of information-passing links 

both (i) and (ii). 

The continuum approach has been widely used in mining, petroleum and 

geotechnical engineering problems to approximate the collective behavior of granular 

assemblies at the field scale. Phenomenological plasticity models that successfully 

resolve macroscopic behavior of specific types of granular materials, such as sand, silt 

and powder, have been extensively reported in the literature [6, 9, 58-65]. However, if no 

length scale is introduced in the phenomenological plasticity models, spurious mesh 

dependence may still occur at the post-bifurcation regime. Furthermore, 

phenomenological model relies on the usage of internal variables to replicate path 

dependent behaviors. It remains a difficult task to directly link or even replicate all 

different dissipation mechanisms originating from the grain scales, such as granular 

vertex and force chain buckling [18, 66, 67], by the evolution of internal variables alone.  

The discrete element method (DEM) provides a simple but computationally intensive 

solution to resolve the aforementioned deficiencies of continuum approaches for granular 

media. In DEM, motion of grains is explicitly resolved based on contacts and long-range 

interactive mechanisms among particles [25, 44, 68-71]. Nevertheless, since DEM 

explicitly models and tracks the motion of each individual particle in the grain assembly, 

the computational cost is often too high for practical engineering problems that are in 

large spatial and time scales.  

To overcome this issue, various concurrent and information-passing multiscale 

methods have been proposed to couple grain-scale simulations with macroscopic 

continuum-scale finite element analyses [42, 45-48, 50-53, 72]. For instance, Wellmann 

and Wriggers [48] introduced an Arlequin DEM-FEM model that divides the spatial 

domain into discrete and continuum subdomains. Parts of the discrete and continuum 



Chapter 2. A Nonlocal Multiscale Discrete-Continuum Model for Predicting Mechanical 

Behavior of Granular Materials 

10 

subdomains are overlapped with each other to create a handshake region such that 

spurious reflection can be suppressed. Li and Wan [51] and Regueiro and Yan [47] 

propose bridging scale method which uses a handshake domain to couple particulate 

model with higher-order continua. 

As mentioned in Chapter 1, the homogenization-based multiscale discrete-continuum 

coupling technique is pioneered by Miehe et al. [42, 46] in which a micro-to-macro 

transition is established by locally attaching microstructures with macro-continuum at 

finite strain. Macroscopic stress tensor is then obtained from the DEM by deforming a 

periodic Lagrangian frame that contains the granular microstructures. Miehe et al. [42, 46] 

extended Hill-Mandel microhomogeneity condition from continuous heterogeneous 

systems to granular media. This study reveals that the responses obtained via the linear 

displacement and uniform stress boundary conditions represent the upper and lower 

bounds of the stiffness, while the periodic boundary condition is the optimal choice at 

which coarse-scale properties converges faster with respect to the RVE size.  

 Stránský and Jirásek [52] , Nguyen et al. [53] and Guo and Zhao [50] proposed a 

conceptually similar approach where homogenized stress measures and the tangent 

operator inferred from periodic discrete element simulations conducted on a 

representative volume element (RVE) are directly used to update an otherwise 

conventional small strain implicit finite element model [34, 54-56]. Andrade and Tu [45] 

proposed a staggered multiscale constitutive model in which evolutions of the yield 

surfaces and plastic potential are governed by DEM simulations or meso-scale 

experiments. This multiscale constitutive model is then used to update the Cauchy stress 

and consistent tangent operator of an implicit small strain finite element model. These 

information-passing DEM-FEM coupling approaches have proven to be stable. 

Nevertheless, both  Nguyen et al. [53] and Guo and Zhao [50] concluded that the implicit 

DEM-FEM coupling model suffers two drawbacks – (i) the large number of DEM 

iteration steps required to reach local convergence and (ii) the pathological mesh 

dependence occurred after the onset of strain localization. Furthermore, while the 

computational cost of the information-passing DEM-FEM coupling model is 
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substantially lower than of a single-scale DEM, the Newton-Raphson scheme used to 

update the finite element solution often requires multiple DEM simulations to achieve 

convergences. This can be a significant issue in the post softening regime where stress-

strain curves obtained from DEM are typically bumpy and sensitive to perturbations. 

According to Guo and Zhao [50], the information-passing multiscale scheme may require 

as much as 48 DEM simulations for each quadrature point. Except [42, 46], the 

aforementioned hierarchical DEM-FEM coupling method are all formulated in the 

geometrically linear regime and thus may not be suitable for the shear band formation 

problems where significant plastic spin may develop as shown in [19].  

In the present chapter, we develop a nonlocal multiscale discrete-continuum model 

based on the Generalized Mathematical Homogenization (GMH) originally developed for 

linking atomistic-continuum scales [34, 54-56]. GMH belongs to the category of 

information-passing multiscale methods, which evolve a coarse-scale model by 

advancing a sequence of fine-scale models in small windows (or RVEs) placed at the 

quadrature points of the finite element model. Consequently, GMH gives rise to a 

constitutive law-free coarse scale equations where the coarse scale continuum model is 

directly driven by discrete element simulations at the grain scales. The primary goal of 

the present work is to develop a hierarchical DEM-FEM coupling scheme that: (i) 

resolves both the overall and fine-scale response of the granular media, (ii) is 

computationally efficient, and (iii) overcomes pathological mesh sensitivity in the post-

bifurcation regime. The contribution of the present work are summarized below: 

(i) Alleviating mesh sensitivity in post-bifurcation regime. Previous hierarchical 

DEM-FEM coupling schemes have proven to be mesh dependence in [26, 27] 

after the onset of strain localization. The proposed multiscale approach remedies 

this issue by applying a modified staggered nonlocal approach proposed in [73, 74] 

to define the unit cell problem for the stress homogenization.  

(ii) Formulating the two-scale continuum-discrete problem via the GMH framework. 

This treatment allows us to derive the Cauchy stress expression directly from the 

equilibrium equations of particle and provide a consistent framework that links 
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the continuum (coarse-scale) and discrete (fine-scale) representations of the 

granular assemblies based on multiscale asymptotic analysis. We also establish 

the connection between the GMH and the Hill-Mandel condition and prove that 

the latter is a specific case of GMH in which coarse and fine scales are in the 

same temporal scales. [23, 24, 75].  

The rest of the chapter is organized as follows. In Section 2.2, the governing 

equations at a scale of particles are briefly reviewed. The theoretical background 

established via GMH to obtain constitutive-law free coarse scale equations are then 

described, followed by the computational aspects of the proposed nonlocal multiscale 

scheme. Numerical examples, including a cyclic simple shear test, the monotonic simple 

shear test and the biaxial compression test, are presented in Section 2.3 to verify the 

model against a single-scale DEM simulation. Observations and conclusions are 

presented in Section 2.4. 

2.2 Method 

In this section, we provide the theoretical basis for the non-local multiscale scheme that 

couples the grain-scale discrete mechanics simulations and the macroscopic continuum 

model via a modified version of GMH, as depicted in Figure 2.1. We first formulate the 

micro-macro transition for the granular assemblies via a multiscale asymptotic analysis. 

This treatment allows one to associate the macroscopic quadrature point with unit cell 

consisting of particles. We then provide a brief description of the coarse scale finite 

element model that replicates the continuum scale behaviors and the unit cell discrete 

element method that replaces the macroscopic phenomenological internal variables to 

provide incremental constitutive update to the macroscopic problem. Due to the usage of 

the conditionally stable explicit scheme, we analyze the relations of the coarse- and fine-

scale critical time step. The staggered scheme used to integrate the nonlocal quadrature is 

also discussed.  
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2.2.1 Micro-macro-transition for granular assemblies via asymptotic expansion 

We consider a unit cell consisting of n  particles. With the interior domain of the unit cell, 

these particles may exert contact force and torque on their neighboring particles. The 

initial position of particle I is denoted a IX , and its displacement is denoted as Iu . Thus, 

the current position of thI particle is 

 

 

Figure 2.1 Information flow in the nonlocal two-scale discrete-continuum model. 

Note that ε
R

is the nonlocal coarse-scale corotational strain increment and σc  is the 

coarse-scale Cauchy stress 

 I I Ix X u   (2.1) 

The distance of two particles I  and J  in the initial configuration is 

 IJ J IX X X   (2.2) 

and in the current configuration is 

 , ,IJ J I IJ J J I It tx x x X u X u X   (2.3) 
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Given the interaction between particles I and J, the EOM for particle I can thus be 

expressed by  

 ext( )I I IJ IJ I

J I

m u f x F   (2.4) 

where Im  is the mass of particle I ; Iu  and Iu  are the acceleration and velocity of 

particle center of mass, respectively; IJf  is the internal contact force applied to particle 

I  by particle J ; ext
IF is resultant external force applied to particle I , such as boundary 

force or body force. The superscript J  denotes the neighboring particles that interact 

with particle I , such that J I
crx x , with cr  being the cutoff radius. The mass of 

particle Im , interval force IJf  and external force ext
IF are assumed to be periodic 

functions due to local periodicity of the grain assembly. 

A particle moves against its neighboring particles by sliding and/or rolling at contact 

points. While the dominant role of sliding was considered in classical theories of strength 

and dilatancy of granular materials [76], previous research, such as Oda and Iwashita [77],  

suggest that rolling, rather than sliding, is a dominant micro-deformation mechanism 

leading to extensive dilatancy of granular media. Mühlhaus and Vardoulakis [78] 

conducted a bifurcation analysis based on a micropolar theory and successfully predicted 

the thickness of a shear band, as well as the shear band direction. Brown and Evans [79] 

questioned the need to incorporate micropolar terms for granular media, based on the fact 

that the coupled stress might be extremely small in most circumstances. In this chapter, 

we do not incorporate the rolling and torsional resistances. Since rotational stiffness is not 

introduced in our DEM model, higher-order kinematic measures, such as particles 

rotation gradient is not incorporated in the homogenized responses. The homogenized 

Cauchy stress tensor components are symmetric and no couple stress is required to 

formulate a complete set of the governing equations.  

In the multiscale discrete-continuum method, two distinct spatial coordinates are 

employed to describe the heterogeneity at a grain level: (i) the coarse-scale coordinate, 

denoted by X , in the coarse-scale domain Ω , at which the grain scale features are 
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invisible, and (ii) the grain-scale or fine-scale coordinate, denoted by Y , in the discrete 

unit cell domain Θ . Assuming that the dimension of heterogeneity is significantly 

smaller than the characteristic size of the macroscopic problem, the macro- and micro- 

scale coordinate systems of the reference configuration are related by 

 Y X   (2.5) 

where  is a small positive scaling parameter that 0 1 . The corresponding 

spatial scales in the current configuration are denoted by x  andy , respectively, and are 

related by y x . We assume that the coarse-scale coordinate X takes continuous 

series of values and displacements , ,tu X Y  are continuous and differentiable inX , 

while the fine-scale coordinate Y is discrete.  

We follow the derivation steps in [34, 54-56] to derive the two-scale formation. 

However, unlike atomistic simulations that involve multiple time scales due to atomistic 

vibrations, a single time scale is considered. The first two material time derivatives of the 

displacement field are given by 

 

2

2

, , , ,
;

I I
I I

d t d t

dt dt

u X Y u X Y
u u   (2.6) 

Prior to carrying out the multiple scale asymptotic analysis it is necessary to rescale 

Equation (2.4). We start by considering the continuum equations of motion 

0 , 0t Xu X P  where 0 is the mass density; P  is the first Piola-Kirchhoff 

stress tensor; X P  denotes the divergence of stress tensor P . For homogeneous media, 

stress derivatives are of order one, whereas for heterogeneous media, for which certain 

components of stresses are discontinuous, stress derivatives are of 1O . Assuming 

that the material density 0 ~ 1O  and the characteristic size of the unit cell ~l O  

so that the volume of the unit cell 3
0 ~O . Thus, the mass 3

0 0~ ~m O . 

Dividing  Equation (2.4) by volume of the unit cell, yields 
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 1 0 ext3 3
2 3

1 1
( )I IJ IJ I

J I

k
k k

u f x F   (2.7) 

where 1k  and 2k  are order one constants. Comparing Equation (2.7) to the continuum 

equations of motion we obtain 

 2 2( ) ~ ( ), ~IJ IJ
extO Of x F   (2.8) 

Then we introduce the following (1)O  normalized quantities 

 3 2 2~ 1 ; ~ 1 ; ~ 1IJ IJ
ext extm m O O Of f F F   (2.9) 

Therefore Equation (2.4) can be rewritten as  

 
1 1I IJ

ext
J I

mu f F   (2.10) 

A multiscale asymptotic expansion is employed to approximate the displacement field  

 
0 1, , , , , ...t t tu X Y u X u X Y   (2.11) 

where the leading order displacement 
0u  is termed the coarse-scale displacement,

0cu u . It is assumed to be independent of the fine-scale coordinate. Inserting 

Equation (2.11) into Equation (2.6) yields 

 

I c

I c

O

O

u u

u u
  (2.12) 

We denote the displacement of particle I  by , ,I I
i iu u tX Y   with IX X  . 

The displacements of the neighboring particle  , ,J J J
iu tX Y  can be expanded using a 

Taylor series around point X  as 

 

2, , , ,1
, , ...

2

J J
i iJ J IJ IJ IJ

i i j j k
j j k

u t u t
u u t X X X

X X X

X Y X Y
X Y   (2.13) 

From Equation (2.13) we have 
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2

, ,
, , , ,

, ,1
...

2

J
iJ I J I IJ

i i i i j
j

J
i IJ IJ

j k
j k

u t
u u u t u t X

X

u t
X X

X X

X Y
X Y X Y

X Y
  (2.14) 

Inserting Equation (2.5) into Equation (2.14) yields 

 
2

2

, ,
, , , ,

, ,1
...

2

J
iJ I J I IJ

i i i i j
j

J
i IJ IJ

j k
j k

u t
u u u t u t Y

X

u t
Y Y

X X

X Y
X Y X Y

X Y
  (2.15) 

Inserting the asymptotic expansion Equation (2.11) into Equation (2.15) yields 

 

1 1

1 2
2

,
, , , ,

, , ,1 1
...

2 2

c
iJ I J I IJ

i i i i j
j

J c
i iIJ IJ IJ

j j k
j j k

u t
u u u t u t Y

X

u t u t
Y Y Y

X X X

X
X Y X Y

X Y X
  (2.16) 

Inserting Equation (2.16) into Equation (2.3) yields 

 
φ ψ

φ ψ

2 ...

...

IJ IJ J I IJ IJ

IJ IJ IJ IJ

x X u u

y x
  (2.17) 

where 

 

1 1

1 2

, , , ,

, , 1

2

IJ c IJ J I
i ij j i i

J c
i iIJ IJ IJ IJ

i j j k
j j k

F Y u t u t

u t u
Y Y Y

X X X

X X Y X Y

X Y X   (2.18) 

Herein, ,c
ijF tX   denotes the coarse-scale deformation gradient, expressed as 

 

c
ic

ij ij
j

u
F

X

X
X   (2.19) 

The contact force IJf  is a function of IJx  so that 
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φ

φ

φ ψ

φ

2

2 2

2

...

IJ IJ

IJ IJ

IJ IJ IJ IJ IJ IJ
i i i

IJ IJ
IJ IJ IJi k
i jIJ IJ

k j

IJ
IJ IJi
i jIJ

j

f f f

f y
f O

y x

f
f O

y

y

y

y

  (2.20) 

where 

 φIJ IJ IJ
i if f   (2.21) 

Inserting Equations (2.12) and (2.20) into Equation (2.10) yields 

 

φ

,
1 1ˆ,

IJ IJ

IJ
I c IJ IJ Ii
i i j ext iIJ

J I j

f
m u t f F

y
y

X u   (2.22) 

Collecting terms of equal power of  gives the equations of motion at different scales 

 1
,: 0IJ I

i ext i
J

O f F u   (2.23) 

 

φ

1 : ,
IJ IJ

IJ
c IJi
i jIJ

J j

f
O mu t

y
y

X   (2.24) 

Equation (2.23) is a quasi-static unit cell problem. We now focus on the coarse scale 

problem. 

Summation over all particles and then dividing the equation by the volume of the 

unit cell 0   for the initial configuration give 

 

φ
0 0

1 1
,

IJ IJ

IJ
I c IJi
i jIJ

I I J j

f
m u t

y
y

X   (2.25) 

It is noted that the density is defined as 
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 0
0

1c I

I

m   (2.26) 

so that 

 

φ

0
0

1
,

IJ IJ

IJ
c c IJi
i jIJ

I J j

f
u t

y
y

X   (2.27) 

Considering Equations (2.17) and (2.18), we have 

,

1 12 , , , ,,

j

IJ IJ IJ IJ
IJ i k i k
i X IJ IJ

j jk k
J IcIJ

k kk IJi
mIJ

m j j jk

f y f
f O

X Xy y

u t u tu tf
Y O

X X X Xy

X Y X YX
  (2.28) 

In the RHS of Equation (2.27)  
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Inserting Equation (2.29) into Equation (2.27) yields 
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J IIJ
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It is shown that the second term of Equation (2.30) will vanish. Recall Equation (2.3),  

 φ ψ2 , , ...JI I J I J I J IJ JI JI tx x x X X u u x X Y  (2.31) 

where 

 

1 1

1 2

, , , , ,

, , 1

2

JI c JI I J IJ
i ij j i i i

I c
i iJI JI JI JI IJ

i j j k i
j j k

F t Y u t u t

u t u
Y Y Y

X X X

X X Y X Y

X Y X   (2.32) 

According to Newton’s third law, we have 

 IJ JIf f   (2.33) 

From Equations (2.32) and (2.33), we have the relationship as follows 

 
IJ JI JI JI
i i i i
IJ IJ JI JI
j j j j

f f f f

y y y y
  (2.34) 

The summation of the second term of Equation (2.30) gives 
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For any pair ,I J  which participates the summation, we have 
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Finally, the coarse-scale equation of motion is expressed as 
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,
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One can rewrite Equation (2.37) as 
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  (2.38) 

Alternatively, we have 
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1
,

n
IJ IJ
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I J I

P t f XX   (2.39) 

where n  denotes the total number of particles in the unit cell.  

Equation (2.39) can be also derived in the current configuration. Considering the 

relationship between the first Piola-Kirchhoff stress and Cauchy stress, we have 
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  (2.40) 

where  J  is the determinant of deformation gradient. Inserting Equation (2.39) into 

Equation (2.40) yields 
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J J
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  (2.41) 

where  denotes the volume of the unit cell in the current configuration. From 

Equations (2.17) and (2.18), we have 

 

1 1 2, , , ,IJ c IJ J I

c IJ

t t O

O

x F Y u X Y u X Y

F X
  (2.42) 

Inserting Equation (2.42) into Equation (2.41) yields 

 
1 1

1 1n n
IJ IJ IJ IJ

ij i jk k i j
I J I I J I

f F X f x O   (2.43) 

According to Equation (2.39) and (2.41), both the first Piola-Kirchhoff stress and 

Cauchy stress can be derived from the multiscale asymptotic analysis. The coarse-scale 

problem that governs macroscopic continuum behavior and the unit cell problem that 

replaces the macroscopic phenomenological constitutive laws can be expressed in the 

current configuration, which read, 

(a) Coarse-scale problem 

 

σ

σ
1

,

1
,

c c c

n
c IJ IJ

I J I

t

t

xu x 0

x f x
  (2.44) 

(b) Unit cell problem 

 ,
IJ I
i ext i

J

f F u 0   (2.45) 

where cu denotes the coarse-scale acceleration; 
1c I

I

m  and are the coarse-

scale mass density and the unit cell volume in the current configuration, respectively; n  
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is the number of particles in the unit cell; σc  is the coarse-scale Cauchy stress and IJx  is 

the vector connecting the centers of two particles;  denotes the divergence operator; 

superscript c  denotes the coarse-scale features. The Cauchy stress obtained in Equation 

(2.44)b is identical to the classical homogenized Cauchy stress obtained using Principal 

of Virtual Work [23, 24, 44, 75].  

Note that the inertia term in Equation (2.4) only enters the coarse-scale equation of 

motion, whereas the unit cell problem remains quasi-static. This is due to the fact that the 

coarse-scale wave length is assumed to be much larger than the RVE size. This approach 

is commonly used for low rates of loading and for short observation times [34, 80]. 

However, in those problems with high rates of loading and long observation times, 

particle interfaces in a granular media may cause reflection and refraction of stress waves, 

giving rise to dispersion and attenuation of waves within material microstructure [81], 

which cannot be accounted for by the approach developed in this chapter. 

 

 

Figure 2.2 Schematics of the coarse-scale boundary value problem (in the initial 

configuration) 

2.2.2 Coarse-scale problem: FEM 

In the macroscopic continuum scale, the trajectories of individual particles are not 

considered. Instead, we associate each coarse-scale material point with a representative 
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elementary volume or unit cell in which effective continuum properties can be derived. 

As a result, the coarse scale displacement field is interpolated by the finite element basis 

function and possesses C0 continuity. The initial and boundary conditions for the coarse-

scale problem described by Equation (2.44) are given as 

 ,0 ; ,0c cu x 0 u x 0  (2.46) 

 σ, , on ; onc u c tt tu x u x n t  (2.47) 

where the essential (displacement) boundary u and the natural (traction) boundary 

t  satisfy u t  and 0u t , as shown in Figure 2.2; cu is the 

velocity vector; u and t  represent prescribed displacements and tractions on u and

t , respectively; n is the unit outward norm of the boundary.  

The weak form of the coarse-scale problem in Equation (2.44)a is stated as follows. 

Find U,c tu x in such that 

 σ W
t

c c c c c c cd d dx w w t w u w   (2.48) 

where the trial and test function spaces are defined as 

 
|

|

U H

W H

1

1

, on

, 0 on

c c c c u

c c c u

u u u u

w w w
  (2.49) 

where and are the coarse-scale trial and test functions, respectively, and is the 

Sobolev space of order one. 

Consider the following discretization of the coarse-scale trial and test functions  

 
A A

A A

,

,

h c c

A
h c c

A

t t

t t

u x N x d

w x N x w
  (2.50) 

which yields a semidiscrete momentum equation  

c
u

c
w

1
H
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 ext= intc ct t tMd f f d   (2.51) 

where AN is a shape function corresponding to node A ;  represents the set of nodes in 

the mesh; A
c td and A

c tw  denote the nodal degrees-of-freedom of trial and test 

functions, respectively; the superscript h  represents the discretized quantities; cd and cd  

are the coarse-scale nodal displacements and accelerations, respectively; M , intf and extf

are the coarse-scale  mass matrix, internal force and external force vectors, respectively, 

defined as 

 extσ tint; ;c T T c T cd d dM N N f B f N   (2.52) 

where N and B  are the coarse-scale shape functions and their symmetric gradients, 

respectively; σc  is the coarse-scale Cauchy defined by Equation (2.44)b. 

In the present work, the continuum coarse-scale problem in Equation (2.51) is 

integrated using explicit central difference method [82]. Lumped mass is used in the 

coarse-scale simulations. Unlike the conventional macroscopic finite element approach, 

the constitutive responses are not obtained from macroscopic constitutive law but rather 

from homogenized responses of particle assemblies associated with every quadrature 

points in the finite element mesh. 

2.2.3 Discrete element unit cell problem 

Consider a collection of particles within the interior domain of a cuboidal unit cell. This 

collection of particles is surrounded by an exterior layer of one-particle thickness. This 

exterior layer deforms periodically in space and may interact with the particles inside the 

unit cell but its motion is completely controlled by the prescribed periodic boundary 

conditions provided by the coarse-scale problem. The particle-to-particle and particle-to-

boundary interactions are both simulated via discrete element method and the quasi-static 

macroscopic responses of the unit cell are subsequently homogenized from each unit cell 

and passed to the coarse-scale solver. 
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The quasi-static solution of the unit cell problem in Equation (2.45) can be obtained 

by seeking the steady-state solution of an explicit dynamic relaxation DEM problem with 

incremental loading steps or by directly solving the nonlinear system of equations via an 

implicit scheme. In practice, the implicit scheme is rarely used for DEM problems. As the 

nonlinearity of responses may stem from both the nonlinear and path dependent contact 

laws and the changes of topologies of grain contacts, it is easier to implement and use 

explicit scheme to obtain the quasi-static solution of DEM assemblies. The dynamic 

relaxation problem can be viewed as an iterative process in which pseudo-dynamics 

processes are emulated in an artificial time scale. This iterative process is considered 

complete when a deformed configuration of the granular assembly with all the forces and 

moment in equilibrium is found. Using numerical examples to provide evidences, Bardet 

and Proubet [83] show that both mass scaling and viscous damping can be used to 

enhance computational efficiency (by reducing number of iterative steps) without 

significantly altering the approximated quasi-static configurations of the DEM assemblies. 

In this chapter, an explicit central difference leap-frog pseudo-time integrator and 

artificial damping are both employed to obtain the quasi-static solution [25]. 

2.2.3.1 Contact models for discrete element simulations in unit cells 

A simplified contact model, the frictional Hertz-Mindlin mechanism with viscous 

damping, is used to represent the particle contact mechanism. Cohesive bonding and 

rolling resistance between the particles are not considered in this chapter. Incremental 

changes to the normal and tangential contact forces, f
nf and f

tf , at each contact are 

determined by the particle shear modulus f
gG , Poisson ratio f , radii of the contacting 

grains 1R  
and 2R , and the fine-scale normal and tangential displacements at the contact, 

fd and fds [49], 



Chapter 2. A Nonlocal Multiscale Discrete-Continuum Model for Predicting Mechanical 

Behavior of Granular Materials 

27 

 
1/22

;
1

f e
gf ff f f

n n n f

G R
df k d k   (2.53) 

 
1/22 2

;
2

f e
gf ff f f

t t t f

G R
df k ds k   (2.54) 

where f is the indentation at the contact and eR is the effective radius,  

 1 2

1 2

2e RR
R

R R
  (2.55) 

Superscript f  denotes fine-scale features. The fine-scale tangential force is governed by 

the friction coefficient f , such that f f f
t nf f . For stabilization, a viscous damping 

force is employed 

 ,
ff f

s visf C s   (2.56) 

where fC  and fs  are the viscosity and  the tangential sliding velocity at contact. In case 

of slow, quasi-static loading conditions, the mass damping Ic and contact damping fC

must be sufficient to dissipate high frequency vibrational modes without impeding 

particle motion that arise from particle interactions or the boundary conditions.  

2.2.3.2 Dynamic relaxation scheme of unit cell problem 

For a given unit cell, the stress of the DEM assemblies depends on the fine-scale material 

parameters, microstructural attributes, such as particle size distribution and spatial 

heterogeneity, and the loading path and time-history that leads to the current 

configuration [84, 85]. If the wavelength of the traveling signal is significantly larger 

than the particle dimensions, the quasi-static stress homogenized from the forces and 

branch vectors of the quasi-static configuration of unit cell can be used to update stress 

measures of the macroscopic dynamics problem without introducing significant errors.  
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Various criteria have been proposed to detect the quasi-static state of DEM dynamic 

relaxation problem [84, 86, 87]. In this work, we use the unbalanced force index ufI  

introduced by Ng [84], 

 

2

1

2

1

1
unbalanced forces

1
contact forces

p

c

n

p
uf n

c

n
I

n

  (2.57) 

where pn  and cn  denote the number of particles and number of contacts, respectively. 

The size of the pseudo-time or load step are calibrated such that the unbalanced force 

index ufI  is always kept smaller than a threshold value, .e.g. 0.01. This treatment ensures 

that the artificial damping introduced for dynamics relaxation does not significantly 

affect the simulated friction angle and shear strength. Mass scaling is also used to enable 

the usage of larger pseudo-time step and to reduce computational cost. In each pseudo-

time step, the incremental displacement is prescribed to the particles at the boundary of 

the unit cell such that the unit cell deforms with the strain increment prescribed by the 

macroscopic problem. One particular interesting finding from Andrade and Tu [45] is 

that the granular assemblies with more particles typically require a small strain increment 

and more loading steps to maintain static equilibrium. Notice that if an identical quasi-

static boundary value problem is simulated by both DEM and DEM-FEM models, the 

pure DEM model will require much more increment loading steps than the DEM-FEM 

counterpart [45]. In this sense, the DEM-FEM model can be considered as a divide-and-

conquer tactic tool to coarsen load increments and increase efficiency of numerical 

simulations for large scale quasi-static granular mechanics problems. 

2.2.4 Numerical algorithms for the nonlocal multiscale discrete-continuum model 

The two-scale problem, consisting of the discrete unit cell problem subjected to periodic 

boundary conditions and the coarse-scale equations of motion, is two-way coupled. In 
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this section, we focus on algorithmic details. The two-scale problem described by 

Equations (2.44) and (2.45) is solved sequentially as follows: 

(i) Solve the dynamics relaxation problem at coarse scale using a corotational finite 

element model and compute the coarse-scale strain increment of each local 

quadrature. 

(ii) Obtain the nonlocal coarse-scale strain increment using the staggered nonlocal 

operator and evaluate the nonlocal corotational strain increment.  

(iii)  Prescribing periodic boundary conditions to the unit cells on the nonlocal 

corotational coarse-scale strain increment of the corresponding nonlocal 

quadrature.  

(iv) Obtain new static equilibrium states of the granular assemblies compatible to the 

prescribed boundary condition via DEM and compute the corotational coarse-

scale Cauchy stress by Equation (2.44)b.  

(v) Transform the corotational coarse-scale Cauchy stress to the fixed global frame 

and compute residual vector. Go back to (i) for next step. 

To account for the geometric nonlinear effect, we employ a corotational formulation 

[88] where a local corotational coordinate frame, denoted by  , is attached to each finite 

element quadrature point and rotated with the deforming material. To preserve the 

characteristic length scale and eliminate pathological mesh dependence, we use a 

staggered nonlocal operator that explicitly introduces an intrinsic length scale and thus 

limits the shear band thickness when strain localization occurs. The interaction radius, 

denoted by R, is assumed to be an intrinsic material property. 

In step (i), the coarse-scale incremental strain ε
1 2

,c
n

tx  is obtained from the 

solution of the coarse-scale problem at each quadrature point, in each time step. Due to 

strong size dependence that has been observed in granular materials we define a nonlocal 

coarse-scale strain increment [73, 74] ε
1 2

( )c
In
R

x as follows  
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  (2.58) 

where εcn  
denotes the coarse-scale strain computed on the fly, i.e. is 1 2 , 

which represents either previous or current time step. ε
1 2

c
n  

is the coarse-scale strain at 

the current time 1nt ;  Ix denotes the position of the current quadrature point I ; IQ  
is a 

set of quadrature points ξJ IQ  adjacent to point Ix  that satisfy 

  ξ ξ,I I J J IQ R Qx   (2.59) 

where R  denotes the characteristic radius. ξ*( , )I Jx
 
is defined in Chapter 4. 

Prior to exerting ε
1 2

( )c
In
R

x onto the unit cell, it is rotated to the corotational 

frame, to yield the nonlocal corotational coarse-scale strain increment ε
1 2

( )In
R

x : 

 ε ε
1 2 1 2 1 2 1 2

( ) ( ) ( ) ( )
T

c c c
I I I In n n n
R R

x x x x   (2.60) 

where 
1 2

( )c
In
x denotes the coarse-scale rotation obtained from the polar 

decomposition of the coarse-scale deformation gradient F
1 2

( )c
In
x at a quadrature point 

Ix defined as 

 F
1/2

1 2
( )

nc
In

x
x

X
  (2.61) 

and 1/2nx is the coordinate at the midstep. Instead of directly prescribing the local strain 

increment as periodic boundary conditions applied on the boundaries of unit cells, the 
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proposed model employs the  coarse-scale strain increment ε
1 2

( )In
R

x  obtained 

from the macroscopic solver to obtain the corotational coarse-scale Cauchy stress 

σ 1 ,n tx  through Equation (2.44)b using DEM, which is then rotated back to the 

global Cartesian coordinate system. 

 σ σ1 1 1 1

Tc c c
n n n n   (2.62) 

The resulting coarse scale stress σ 1 ,c
n tx  is passed back to coarse-scale finite 

element engine to continue the iterative process. The aforementioned nonlocal discrete-

continuum model is implemented by integrating FOOF [89], a macroscale FE solver, and 

OVAL [90], a microscale DEM solver. The numerical algorithm that links between the 

macro- and micro- scale solvers is shown in the flow chart in Figure 2.3. At each 

nonlocal quadrature point in the FE mesh, the FE solver executes the DEM unit cell 

problem in the corotational frame subjected to the nonlocal coarse-scale incremental 

strain ε
1 2

( )In
R

x . The fine-scale DEM solver evolves the discrete unit cell using 

explicit time integration to compute the coarse-scale Cauchy stress required to advance 

the coarse-scale problem. The particle arrangement, i.e. particle positions, velocities, and 

contact information, at the end of the coarse-scale time step are stored, to allow the new 

DEM simulation to begin from the final state of the previous time step. Each integration 

point has its own “restart” out-of-core file. The numerical implementation of the 

corotational formulations is illustrated in Box 2.1. 
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Figure 2.3 The overall framework integrating FE and DEM solvers for solving the 

two-scale problem 
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Box 2.1 The numerical implementation of the co-rotational DEM-FEM scheme for large 

deformation problems 

 

Stress updating procedure for coarse-scale corotational framework 

Step 1.     Compute the coarse-scale deformation gradients at step 1 2n  and 1n   

1
1

1/2
1/2

;
c
nc

n

c
nc

n

X u
F

X
X u

F
X

 

 

Step 2.     Compute polar decompositions at step 1 2n and 1n  

1 1 1

1/2 1/2 1/2

c c c
n n n
c c c
n n n

F U

F U
 

 

Step 3.    Compute the coarse-scale strain increment over the step from the B matrix 

for the coarse-scale finite element 

ε 11 2 1 2
c c c

n nn n
B u u    

ε ε
1 2 1 2

c c
n n

 (convert 6×1 vector to symmetric tensor) 

 

Step 4.    Apply the nonlocal operator 
R

on the coarse-scale strain increment 

ε
1 2

c
n

 yields the nonlocal strain increment ε
1 2

c
n

R
, and then rotate 

the nonlocal strain increment to the corotational frame  

ε ε1/2 1/21 2 1 2

Tc c c
n nn n

R R
 

 

Invoke the DEM to solve for the coarse-scale corotational Cauchy stress at 

1n  

σ ε1 1 2
DEMn n

R
 

 

Step 5.   The coarse-scale corotational Cauchy stress is rotated back to the global 

Cartesian coordinate system to get the coarse-scale Cauchy stress at step 
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2.2.4.1 Temporal Stability of the coupled explicit DEM-FEM problems 

The objective of the unit cell dynamics relaxation problems is to obtain stress measures 

from the granular configurations in the static equilibrium. As a result, both the mass and 

damping coefficients used in the DEM is not related to the actual physical quantities, but 

are parameters manipulated by the users to obtain non-oscillatory overall responses. 

While the original physical meanings of the mass and damping are lost in dynamics 

relaxation problem, both the explicit dynamics and dynamics relaxation problem still 

share the same form of governing equations and can be integrated in time by the 

conditionally stable explicit scheme. The critical pseudo-time step of the DEM problem 

therefore takes the same form as a damped mass-spring system, i.e., 

 2

max

2
( 1 )f f f f

n cr f
t t   (2.63) 

where f
crt denotes the critical time step of the macroscopic problem; f denotes the 

fraction of critical damping corresponding to the highest natural frequency of the granular 

system max
f . Assuming that there is no rotational stiffness introduced in the DEM 

contact model, the natural frequencies of the translational and rotational vibration of each 

particle read (Oñate and Rojek [43]),   

 2 2
sphere

sphere

5 2
  ;    ;    ;  

52

f f f
ff f fn t

n tf f

k k k
k k R I m R

Im m
 (2.64) 

where sphereI  is the rotational inertia of the spherical particles and fm  is the mass of the 

particle. The critical time step of the DEM simulation can be obtained via Equation (2.63) 

where the highest natural frequency is approximated by max max( , )f f
n . In 

practice, the DEM dynamics relaxation problems are often conducted with a fixed time 

step, while mass of the particles are tuned to ensure the stability between two pseudo-

time steps.  
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On the other hand, the stable time step for the coarse-scale system is governed by the 

highest frequency ( max
c ) of the course-scale incremental finite element problem 

 2

max

2
( 1 )c c c c

n cr c
t t   (2.65) 

where c
crt denotes the critical time step of the macroscopic problem; c denotes the 

fraction of critical damping corresponding to the highest natural frequency of the macro-

scale FEM model. The critical step defined in Equation (2.65) also applies to the case 

where mass scaling and damping are applied to the macroscopic problem to obtain static 

equilibrium solution. Nevertheless, the critical macroscopic time step of the dynamic 

relaxation DEM-FEM problem is larger than that of the explicit DEM-FEM dynamics 

problem, as the damping and mass scaling are likely to filter out high frequency 

responses. Note that the critical time step of the fine-scale DEM and coarse-scale FEM 

can be related by,  

 
2

max

2
max

1
 ;   ;  

1

f c c
c f
cr cr c f f
t t   (2.66) 

where  is the optimal time step ratio between the fine and coarse scale systems. Notice 

that since the highest value frequency of the fine system is typically the higher one, is 

usually larger than one. 

2.3 Numerical examples 

In this section, four numerical examples are presented to demonstrate the accuracy, 

efficiency and versatility of the proposed multiscale method in predicting the mechanical 

behavior of granular materials. Examples shown in this section provide evidences that the 

multiscale DEM-FEM model is able to replicate the single-scale DEM benchmark results. 

Refinement study indicates that the thickness of shear bands predicted by the nonlocal 

multiscale model is not sensitive to the mesh sizes of the continuum model. 
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2.3.1 Unit cell 

The initial configuration of the unit cell is given in Figure 2.4. The unit cell was 

compacted into a dense and isotropic assembly from an initially sparse random 

arrangement of particles, which contains 4096 spherical grains with diameters ranging 

from 0.43mm to 1.18mm. The porosity after compaction was 0.338, with an initial 

average coordination number of 5.6 contacts per particle. The initial normal stresses in all 

directions were nearly equal to the mean stress of 416kPa. The initial response of the unit 

cell is assumed to be macroscopically homogeneous. 

Periodic boundaries were employed on all sides of the unit cell in the numerical 

examples presented in this chapter. Such boundaries impose kinematic constrains on each 

boundary particle, allowing grains to pass from the parallelepiped unit cell domain to a 

fictitious adjacent one and simulate an infinitely periodic (repeated) system. Period 

boundaries are computationally advantageous over the rigid platens for providing a more 

uniform particle fabric throughout the assembly [46, 91]. Previous work done by [27, 92, 

93] have found that homogenized responses inferred from periodic cell are less sensitive 

to boundary effects.  

 

 

Figure 2.4 The initial configuration of the unit cell 

The micro-model parameters given in Table 2.1 were used as input microscopic 

parameter in the following numerical examples, where shear modulus and Poisson ratio 

are the parameters for Hertz-Mindlin contact model. The mechanical properties of the 
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material were obtained from pure DEM tests on the unit cell, e.g. the uniform 

compression test was used to get bulk modulus and the simple shear test to get the shear 

modulus [94]. The measured mechanical properties are shown in Table 2.2. 

Table 2.1 Model parameters for DEM computation 

29.0 

0.15 

0.50 

0.00 

0.00 

0.12 

Shear modulus G (GPa) 

Poisson ratio 

Coefficient of friction at particle contacts 

Viscosity coefficient for translational body damping 

Viscosity coefficient for rotational body damping 

Viscosity coefficient for contact damping 

Table 2.2 Material properties estimated from unit cell tests  

Young’s Modulus 

  MpaE
 
 

Poisson Ratio 
   

Bulk Modulus 

  MpaK  

Shear Modulus 

  MpaG  

584 0.2 335 241 

 

Accuracy and efficiency of the proposed multiscale technique rely crucially on the 

appropriate selection of the size of the unit cell so that it remains a representative volume 

element (RVE). In particular, the unit cell size must be small enough to ensure 

computational efficiency but large enough to remain representative. One common 

approach to estimate the size of the RVE is to vary the sizes of the unit cells and study 

the scale of fluctuation of the coarse-scale properties [34, 95-98]. Meier et al [99] and 

Guo and Zhao [50] applied this approach to discrete element models. Guo and Zhao [50] 

generated multiple granular assembles composed of different numbers of particles and 

studied the least amount of particles required to maintain the isotropy of the fabric tensor. 

They concluded that at least 400 particles required to constitute an RVE composed of 

particles of poorly graded grain size distribution. In the numerical examples presented in 

this chapter, the grain assembles used to calculate the Gauss point responses are 

composed of at least 4000 particles and has been examined in previous study to ensure 

the isotropy of the initial fabric tensor. 
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All simulations presented in this section are conducted with a three-dimensional 

eight-node hexahedral finite element integrated via the one-point Gaussian quadrature 

rule. The hour-glass control stabilization procedure in [100-102] is used to eliminate 

spurious zero-energy modes in the macroscopic finite element model. While the usage of 

one-point integration rule is a rather simple and well-known numerical treatment, the 

benefits for the DEM-FEM coupling scheme is significant. It improves both the speed 

and accuracy of the multiscale simulations by cutting 87.5% of the expensive 3D DEM 

unit cell simulations in [50, 53] that might cause volumetric locking problems otherwise. 

2.3.2 One element verification tests 

The multiscale model was first verified by comparing the global response of a single 

element (biaxial compression test and simple shear test) against the RVE response from 

pure DEM tests. This verification procedure is first introduced in [50] to test the accuracy 

and robustness of the developed information-passing DEM-FEM coupling scheme at 

material point level. 

 

 

Figure 2.5 The boundary conditions for single element tests 

The single element and its boundary conditions are depicted in Figure 2.5. In the 

simple shear test, the single element was subjected to a constant volume shear loading by 

keeping the confining pressure on the top to be constant. In the biaxial compression test, 

a vertical displacement was applied on the top surface and constant confining pressure 



u

Biaxial Compression Test Simple Shear Test 


u
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was exerted on the surrounding surfaces. In both cases, the constant confining pressure 

was 416kPa, which was identical with the initial mean stress of the unit cell.  

 

  

  
(a) Biaxial Compression (b) Simple Shear 

Figure 2.6 The comparison of stress-strain curves between the multiscale simulation 

and DEM reference in the one element tests: (a) biaxial compression and (b) simple shear 

The comparison of stress-strain curves are shown in Figure 2.6 for the one element 

tests using the multiscale DEM-FEM model and single-scale DEM. It can be observed 

that the multiscale approach gives almost identical prediction with those from the DEM 

simulations. This example verifies that the proposed multiscale discrete-continuum 

approach can replicate the elasto-plastic response of granular material accurately. 

2.3.3 Wave propagation in dry granular rod 

The modeling of wave propagation in granular media, such as wave attenuation and 

dispersion, is an active research area with implications for seismic soil-structure 

interaction, and foundation vibration [30, 31, 103-105]. Continuum-based analytical and 

computational modeling techniques have been widely used to investigate the seismic 
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wave propagation [106, 107]. The path dependent responses of soil are often captured via 

macroscopic phenomenological models [30, 31, 63, 108]. While the cost of the 

continuum simulations is relatively low, the physical underspin of the phenomenological 

approach in the softening regimes is weak. On the other hand, dynamics discrete element 

simulations are also utilized by a number of researchers to study the micromechanics of 

wave propagation in granular matters [28, 109-111]. The upshot of the discrete element 

approach is the availability of microstructural information. However, the high 

computational cost of DEM has often limited the size of the simulations and thus making 

DEM not feasible to simulate field-scale site responses. The objective of this example is 

to demonstrate the potential of using the newly established DEM-FEM method to 

overcome the shortcomings of both continuum and discrete element approaches. To the 

best knowledge of the authors, this is the first time information-passing DEM-FEM 

scheme being used to simulate dynamics responses of granular layers. 

 

 

Figure 2.7 The boundary condition and macroscopic mesh of the sample for wave 

propagation in the granular rod 

The one-dimensional domain has a dimension of 10mm×10mm×100mm, with its left 

hand side boundary totally fixed. Periodic boundaries were applied to the four 

surrounding surfaces of the rod to reduce boundary effect, as shown in Figure 2.7. At the 

macroscopic scale, the domain was discretized by 10 finite elements of equal sizes. The 

density of the model was 31650kg/m . The right hand side of the rod was subjected 
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to a vertically displacement-controlled sinusoidal cyclic load with frequency of 

10kHzf and maximum shearing displacement amplitude of 0.1mma . The time 

duration of the whole simulation was 1ms and the coarse-scale time increment was taken 

as μ1 st . 

 

  
(a) Stress-strain curves 

  
(b) Averaged microstructural properties versus time 

Figure 2.8 Dynamic responses for element 9 at its Gauss point 

The homogenized shear and compressive stress-strain responses of the quadrature 

point of element 9 are shown in Figure 2.8(a). We observe that the hysteresis and 

dissipative responses of non-cohesive frictional granular materials are successfully 

captured. Unlike previous macroscopic approaches where microstructural attributes are 

only taken into account indirectly via the evolution of internal variables, the multiscale 

approach is able to provide important microstructural measurements, such as 

coordination number and porosity of each unit cell as shown in Figure 2.8(b). This 

numerical experiment suggests that the proposed multiscale model is capable of modeling 
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the dynamic responses of granular materials subjected to cyclic loadings within limited 

computational resources. This is a major departure from the previous DEM modeling 

efforts, in which particles are enlarged artificially for the sake of reducing the 

computational cost [112]. 

 

Figure 2.9 Geometric model and the boundary conditions for the simple shear test [49] 

2.3.4 Shear band in a simple shear simulation on a dense grain assembly 

In this example, the proposed model was further validated by a simple shear test on a 

dense grain assembly. Multiscale simulation results were compared with those from a 

single-scale DEM simulation conducted in [49]. The geometries and loading conditions 

are schematically shown in Figure 2.9. The model dimensions were 50.6mm × 118mm × 

12.7mm. It was fixed at its bottom and sheared horizontally at its top boundary. Periodic 

boundary conditions were applied to the four surrounding surfaces to ensure a shear band 

develops along the full x-x width when passing across the periodic side boundaries. The 

domain of the numerical specimen was discretized into a uniform coarse mesh with 

12×5×1 elements. The grain assemblies assigned to all quadrature points are initially 
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identical and thus the numerical specimen is macroscopically homogeneous. As a result, 

the shear band in a simple shear test may occur at any height, which makes the location 

of the band unpredictable. The previous DEM simulation results reported in [49] indicate 

that a shear band forms along a horizontal plane which is located at about three-quarters 

of the assembly height from its fixed boundary, a result likely to be caused by subtle 

imperfection within the grain assembly. To match the location of shear band in the DEM 

and DEM-FEM simulations, we artificially imposed an imperfection inside the shear 

band to break the symmetry and homogeneity of the sample. The unit cell with 

imperfection was created by randomly taking out 25 particles from the original unit cell. 

It should be noted that the initial state of the unit cell, e.g. mean stress, porosity and 

coordination number, needs to be identical with those of the grain assembly in the single 

scale DEM test. To maintain a quasi-static loading condition, the mass scaling technique 

was used in the coarse-scale finite element method for the entire model throughout the 

simulation. 

Figure 2.10 through Figure 2.13 show the macroscopic mechanical behavior of the 

shear band during shear loading with constant vertical stress 0 416 kPap . In the 

multiscale simulation results, the overall shear strain was computed from the horizontal 

displacement 1u  measured at the top surface divided by the initial height 118mmh  

while the shear stress was obtained from the reaction force at the fixed end in the 

direction of shearing divided by the area of the bottom surface. Good agreements are 

observed in these figures between the results predicted by both the multiscale model and 

the DEM. For example, Figure 2.10 shows the shear stress-strain response of the grain 

assembly. Both shear stress and mean stress (see Figure 2.10 and Figure 2.11) reach their 

peak value and remaining nearly level until 12 6% , followed by an abrupt softening 

between the strains 12 6%  to 12 8% . Then at 12 8%  to 20% , shear and mean 

stress fluctuate at the critical state where porosity remains constant. Plastic dilatancy is 

observed in Figure 2.12 where the porosity of the assembly increases monotonically even 

as the compressive mean stress increases. As shear loading proceeds, porosity converges 
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to a constant level after the shear stress reaches to its residual condition. This increase of 

volume is ascribed to the re-arrangement of particles in dense spherical packings and 

dense sands as they rise up over neighboring particles [49, 113]. Figure 2.13 shows the 

average coordination number of the entire assembly. By comparing the multiscale and 

pure DEM simulations, we can see that the multiscale model is able to replicate the 

evolution of coordination number, which decreases rapidly in early, pre-peak stress stage 

and eases down to a nearly constant in a gently sloping stretch throughout the subsequent 

peak, softening and residual periods. 

The deformed configurations and averaged porosity along the assembly height at 

axial strain 12 12%  obtained from multi- and single- scale simulations are compared 

in Figure 2.14(a). The porosity curve obtained from the multiscale simulation is 

composed of 12 discrete points, each of which is an average of the porosities of a row of 

macroscopic element. Both the multiscale and DEM simulations indicate that the shear 

band is about 13-16mm, a quantity of great importance and will be used as a measure of 

the characteristic length in the size effect studies in the next example. The L2 norms of 

the Euler angles of each particle in the unit cells inside and outside the shear band are 

plotted in Figure 2.14(b) to analyze the evolutions of microstructural attributes inside the 

deformation band. Consistent to the finding in the single-scale benchmark, the multiscale 

model predicts that particles inside the shear band rotate more than those outside the band. 

No grain-scale deformation band was found inside the unit cells of the multiscale model. 
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Figure 2.10 Shear stress-strain response during simple shear loading 

 

 

 

Figure 2.11 Mean stress versus shear strain during simple shear loading 
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Figure 2.12 Porosity versus shear strain during simple shear loading 

 

 

Figure 2.13 Coordination number versus shear strain during simple shear loading 
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(a) Porosity along height (b) Microstructural attributes inside and outside the shear band 

Figure 2.14 Profiles of (a) porosity and (b) overall deformed shape of the assembly as 

well as particles rotations of unit cells inside and outside the shear band at strain 

Given the same computational resource, the CPU time for the multiscale simulation 

for the simple shear test with the current coarse mesh is 22 hours, which is much shorter 

than the CPU time used to complete the pure DEM counterpart (about one month). 

Therefore, it is evident that the proposed multiscale approach can reduce the 

computational cost significantly while making accurate prediction of the mechanical 

behaviors for granular materials. This enormous saving in simulation time is attributed to 

(1) the efficient bridging of the different spatial scales, (2) the introduction of multiple 

time-step scheme, which allows the coarse-scale problem to evolve at a much larger time 

step without causing stability issues, and (3) the usage of the reduced integration 

elements with hourglass control, which both reduces solution times substantially and 

eliminates shear locking while maintaining spatial stability. 
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2.3.5 Shear band in a plane strain biaxial compression test 

Strain localization is of great importance to engineering applications, as it is often a 

precursor to progressive failure in granular materials. If no length scale is introduced, the 

onset of strain localization in numerical simulations may cause the loss of ellipticity (for 

static cases) or hyperbolicity (for dynamic cases) of the boundary value problem. This 

undesired ill-posedness may lead to pathological mesh dependence. To circumvent this 

issue in continuum models, various localization limiters have been introduced, including: 

(i) nonlocal or gradient models of which the constitutive response is governed by a 

gradient or integral of at least one internal variable(s) or strain measure [114-116], (ii) a 

rate-dependent constitutive law [82], and (iii) formulations that permit displacement 

discontinuities [117-121]. 

Pathological mesh size dependency has also been observed in the previous multiscale 

DEM-FEM coupling simulations [50, 53]. This pathological mesh size dependency is due 

to the ill-posedness of the macroscopic finite element model [82]. The proposed 

multiscale approach remedies this situation via a modified staggered nonlocal approach. 

To test whether this staggered nonlocal operator successfully introduces an intrinsic 

length scale and limits the shear band thickness when strain localization occurs, two sets 

of biaxial compression tests were carried out using the local and nonlocal multiscale 

model, respectively. The geometry, boundary conditions and the macroscopic meshes of 

the model are shown in Figure 2.15(a). The dimensions of the specimen were

40mm 105mm 5mm . A displacement controlled vertical load was monotonically 

applied on the top surface of the model. The confining pressure applied on vertical 

boundaries remained constantly throughout the loading. The asymmetric boundary 

condition was used at the bottom surface, in order to break symmetry and to initiate the 

localization. Three finite element meshes depicted in Figure 2.15(b) were considered. For 

the nonlocal multiscale model, the characteristic length was chosen to be 2 13.5mmR , 

which is the same with the unit cell size, and is also consistent with the shear band width 

observed in the previous example. 
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Mesh-1 

 

Mesh-2 

 

Mesh-3 

 

(a) Model geometry and 

boundary conditions 

(a) Three meshes with 2881, 31121 and 

41161 elements, respectively 

Figure 2.15 (a) The model dimensions and boundary conditions and (b) three meshes 

considered in the biaxial compression tests 

The global stress-strain responses for different meshes predicted by local and 

nonlocal multiscale models are shown in Figure 2.16 and Figure 2.17, respectively. As 

can be seen in both figures, all three cases of meshes yield an identical, relatively elastic, 

pre-peak stress-strain behavior and alike peak stresses. The slight kink shown in the 

elastic regime is due to the wave reflection from the bottom boundary of the model, 

which may be removed by modifying the mass scaling factor. As loading proceeded, 

strain localization emerged and finally developed into a shear band. Even with the 

potential regularizations provided by the rate-dependence of the contact laws, the 

constitutive responses obtained from local multiscale model still exhibits mesh 

dependence in the post-bifurcation region, as shown in Figure 2.16 and Figure 2.17. On 

the other hand, Figure 2.18 shows the post-bifurcation stress-strain responses obtained 

from the nonlocal multiscale model. We observed that the softening responses in three 
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cases are closer. The three curves converges to an identical stress level although the early 

stage softening slopes show moderate discrepancy. 

 

 

Figure 2.16 Compressive stress versus strain curves for different meshes using local 

multiscale model 

   

Figure 2.17 Contour plots of compressive strain for three meshes (local multiscale 

model) 
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Figure 2.18 Compressive stress versus strain curves for different meshes using 

nonlocal multiscale model 

 

Figure 2.19 Contour plots of compressive strain for three meshes (nonlocal multiscale 

model) 
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The contour plots of vertical compressive strain for three meshes are shown in Figure 

2.19. By comparing the stress-strain curves and the vertical strain distribution shown in 

Figure 2.16 to Figure 2.19, one may observe that the nonlocal multiscale scheme is able 

to deliver more consistent responses in the refinement study. Notice that the post-pack 

branch of the finest mesh of the stress-strain curve not always giving the softest response. 

This is attributed to the fact that there are not sufficiently material points in the coarse 

mesh to obtain an accurate integration for the nonlocal strain. As a result, the length scale 

of the coarse mesh is slightly larger than the fine mesh counterparts. In all numerical 

simulations, we found no shear band generated in the DEM assemblies. This absence of 

grain-scale shear band can be attributed by the particle shapes, the absence of rotational 

stiffness, lack of enrichment mode for the macroscopic finite element and the usage of 

periodic boundary condition as opposed to minimal kinematic boundary conditions. 

Detail examinations of these factors are out of the scope of the current study, but will be 

considered in the future. 

The contour plots of vertical compressive strain for three meshes are shown in Figure 

2.19. Similar localization behaviors and band widths are observed in simulation results 

for different meshes predicted by the proposed nonlocal multiscale model. It can be seen 

that the shear band width shows little dependency on mesh size. 

2.4 Conclusions 

In this chapter, we present a nonlocal multiscale discrete-continuum model for granular 

media. The proposed multiscale model effectively bridges two spatial scales, the coarse 

(continuum) scale and the fine (discrete) scale, by an information-passing coupling 

scheme based on the Generalized Mathematical Homogenization (GMH) theory. Each 

nonlocal quadrature point in the coarse-scale mesh is associated with a unit cell 

consisting of a granular assembly. The nonlocal strain obtained from the FEM solvers is 

converted into periodic boundary conditions for the grain-scale simulations occurred in 

the unit cells, which in return provide the nonlocal constitutive update at the macroscopic 

level via upscaling. This proposed model is verified via four benchmark problems. Good 
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agreement has been observed by comparing the numerical solutions obtained via the 

multiscale DEM-FEM model with the single-scale DEM benchmark. The numerical 

examples demonstrate that the proposed multiscale discrete-continuum model is capable 

of reproducing both the dynamic and quasi-static behaviors of granular materials and 

simulation results obtained for bifurcation problems are practically mesh size 

independent. The multiple spatial scales and multi-step framework also presents a 

significant cost reduction compared to the direct DEM simulations. 
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Chapter 3  

Determining Material Parameters for Critical 

State Plasticity Models Based On Multilevel 

Extended Digital Database 

In this chapter, a new staggered multilevel material identification procedure is proposed for 

phenomenological critical state plasticity models. The key idea is to create a secondary virtual 

experimental database from high-fidelity models, such as discrete element simulations, then merge both the 

actual experimental data and secondary database as an extended digital database to determine material 

parameters for the phenomenological macroscopic critical state plasticity model. This chapter is 

reproduced from the paper co-authored with Waiching Sun and Jacob Fish, which was accepted for 

publication in  the Journal of Applied Mechanics [122]. 

3.1 Introduction 

Due to the complexity of granular material behaviors, phenomenological constitutive 

models must strike a balance between simplicity and predictability. While more 

comprehensive phenomenological models may be more robust and accurate for a given 

situation, the calibration of material parameters for such models are typically more 

complicated.  Due to the larger set of internal variables required to describe the path 

dependent behavior more accurate, comprehensive constitutive models often require a 

sizable datasets composed of multiple stress paths, loading and drainage conditions in 

order to generate sufficient constraints for calibrations. Nevertheless, the demand to 

generate, measure, store, and track the sufficient data through numerical experiment can 
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be costly and time consuming and therefore make the comprehensive  models less 

appealing or even deemed to be impractical. The goal of this research is to accelerate the 

use of comprehensive constitutive models by means of an extended material database.  

Over the past four decades, numerous constitutive models have been developed to 

describe the characteristic behavior of granular materials. The framework of elastoplastic 

modeling is well suited to simulate the path-dependent responses of granular materials, 

i.e., plastic strain, shear-dilatancy effects, stress-path dependency, pressure sensitivity, 

rotation of principal stress axes, fabric anisotropy, liquefaction and cyclic mobility, 

localization and shear banding [8, 10-13, 108, 123-129]. The critical state concept in 

combination with the elastoplasticity theory has been rather successful for constructing 

simple and pertinent constitutive models for sand and other cohesionless granular 

materials [14, 130-132]. Recently, these critical state models have been modified to 

incorporate stress anisotropy due to the evolution of fabric, and the anisotropic kinematic 

hardening responses for cyclic loading [16, 17, 65, 133, 134].  The improved accuracy, 

nevertheless, comes with the price of increased material parameter set.  Consequently, it 

becomes no longer feasible to identify material parameters by visual inspection. Instead, 

one must constitute a constrained optimization problem designed to identify material 

parameters that minimizes the errors of numerical simulations characterized by an 

objective function and a set of constraints through an iterative process [135].  The 

discrepancy between experimental data and numerical simulations in a least square sense 

comprises the objective function, which depends on constitutive law parameters. A 

optimization algorithm, such as the gradient-based methods [136, 137], swarm 

intelligence-based algorithms [138, 139],  and neural networks [140], is employed to seek 

material parameters that minimize the error defined by the objective function. There have 

been a number of attempts to calibrate constitutive model parameters for sands (e.g. 

Toyoura sand [15, 141], Nevada sand [137, 142, 143] and pea-gravels [144]). Various 

material identification schemes [145, 146] adopted finite element based inverse analysis 

to account for spatial heterogeneity. By utilizing a spatially dependent objective function, 

these algorithms exploit information from measured inhomogeneous deformation fields 
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in comparison to the finite element solution to identify material parameters. This 

approach [147] has been recently employed to identify material parameters for granular 

materials by utilizing full-field displacement measurements. Spatially varying 

constitutive model parameters can be then obtained from such a calibration process. 

The identification of material parameters for phenomenological constitutive laws 

relies heavily on experimental data obtained from laboratory tests or field studies. Since 

the cost and time involved to conduct physical tests required for calibration of material 

parameters is quite prohibitive, a widespread adoption of comprehensive models in 

practice is quite limited. For instance, to identify the shape and size of a yield surface, 

one may need to record the yield stress for multiple stress paths with different confining 

pressures. Such an extensive experimental data is rarely justifiable in practice due to 

considerable cost involved. A more cost-efficient alternative is to conduct only a limited 

numbers of tests and replace the rest of tests with virtual high-fidelity simulations. For 

instance, a small-scale physics-based high-fidelity model can be used to generate the 

required computational (virtual) data, which is then merged with an available limited 

experimental data to form so-called an Extended Digital Database (EDD). Experiments 

(both laboratory and virtual) housed in the EDD are then used to explore the new features 

of the comprehensive phenomenological constitutive material models and to identify their 

parameters. Such a framework is one of the key components of the Integrated 

Computational Material Engineering (ICME) [148], with a wide variety of engineering 

applications ranging from informatics-based material design to comprehensive data 

mining tools [149, 150] and wing design optimization in aerodynamics [151, 152].  

In the present chapter, we propose a staggered multilevel approach for parameter 

identification of the phenomenological critical state plasticity models based on the EDD. 

By this approach, a secondary virtual experimental data is created from the high-fidelity 

models, such as the discrete element simulations (DEM), and then merged with the 

experimental database. The calibration procedure therefore consists of two steps: (i) 

calibration of the material parameters of the DEM to limited experimental database using 
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optimization algorithms, and (ii) formation of EDD by expanding experimental database 

with the multi-axial loading simulations of the calibrated DEM.  

The critical state two-surface plasticity model pioneered by Dafalias and Manzari 

[15], which incorporates the fabric-dilatancy effect, is used for proof of concept as a 

lower-fidelity model in comparison to the DEM. The DEM simulations of monotonic and 

cyclic torsion, directional shear, and various triaxial loads are used to expand the 

experimental database. The present chapter focusses on the Nevada sand for which 

experimental data is available.  

The rest of the chapter is organized as follows. The proposed identification 

framework and the salient features of the EDD-based material identification procedure 

are introduced in Section 3.2, followed by the formulations of the variable-fidelity 

models, including the DEM and Dafalias-Manzari critical state plasticity model. 

Calibration of the DEM assemblies and the digital database formation are detailed in 

Section 3.3. The robustness and the effectiveness of the multilevel material identification 

process are studied via numerical experiments that calibrate the Dafalias-Manzari critical 

state plasticity model, hereafter referred as DaMa, to the EDD in Section 3.4 and Section 

3.5. Finally, conclusions are drawn in Section 3.6. 

3.2 The variable fidelity model framework 

3.2.1 Description of the proposed algorithm 

The proposed multilevel calibration approach synthesizes both micro-scale and macro-

scale analyses. In the micro-scale analysis, a calibration of the geometric and micro-

mechanical parameters of the DEM assembly based on the experimental data is carried 

out.  The calibrated DEM simulations are subsequently used to expand the experimental 

database with new simulated loading histories, creating an extended database that 

combines the virtual and physical experimental data. This combined dataset is used to 

calibrate phenomenlogical constitutive model by solving the inverse problem with digital 

and experimental database that comprise the EDD as constraints.  To test whether the 

calibrated phenomenological model is predictive, experimental data is split into two sets: 
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1) the training set, which is used for inverse calibration, and (2) the verification set that 

compares experimential data not included in the first set with the simulated response to 

assess the accuracy and robustness of forward predictions. The EDD provides the 

necessary dataset for calibration of multi-parameter phenomenological model, such as 

DaMa. Figure 3.1 illustrates the basic idea of the proposed multilevel material 

identification procedure using EDD and optimization. 

 

 

Figure 3.1 The flowchart of the proposed multilevel material identification procedure 

using EDD and optimization 

3.2.2 Physics-based high-fidelity model: DEM 

In the proposed calibration framework, we use DEM as the high-fidelity model to expand 

the experimental data. First proposed by Cundall and Strack [25], the discrete (distinct) 

element method (DEM) have been widely used to investigate micromechanical features 

of the granular assemblies. In a DEM assembly, the translational and rotational motions 

of each particle are obtained by the force and momentum equilibrium equations 
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where Jm and JI are mass and moment of inertia of particle J , respectively;  Ju and θJ

are translational and rotational accelerations, IJf and IJM  are inter-particle force and 

moment respectively exerted on particle J  from particle I  at contact,  IJD  is contact 

damping force comprising of normal, IJ
nD , and tangential, IJ

sD , components at the 

contacts,  defined as 

 ;IJ IJ
n n t sc cD n D s   (3.2) 

where n  and s  are normal and tangential components of the relative velocities between 

particles I  and J ; here, nc and sc  are the corresponding contact damping coefficients.   

gC and *
gC  are the coefficients of global damping operating on particle velocities Ju and 

θJ , respectively [25]. The contact and global damping in the DEM simulations are 

chosen to adequately damp the higher frequency modes without excessively delay 

particle motions [49]. 

The DEM simulation explicitly models the kinetics of individual grains via inter-

particle contact laws. In our implementation, we adopt the Jäger contact model [153-155] 

with a general contact profile in which the sphere is assumed to have a specific local 

irregularity of the form A r  at the contact region, as shown in Figure 3.2(a).  

In the Jäger contact model, the normal force between an asperity of a general form 

and a hard flat surface is defined as 

 
1(1 )

1 24
,

(1 )(1 ) 1 2
n s

s

G
f C C

A
  (3.3) 

where  denotes the indentation at contact (half of the contact overlap); sG  and s  are 

shear modulus and Poisson’s ratio of the grains, respectively; and  is the gamma 

function;  is a variable that describes the local irregularity of contact. Equation (3.2) 

yields the standard Hertz solution if 2  and 2 1 2A R , representing Hertzian 
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contact along ideally smooth spherical surfaces (Figure 3.2(a)). With a conical asperity 

with 1 , 1A  corresponds to the outer slope of the cone (Figure 3.2(b)).  

 

(a) 

 

(b) 

 

Figure 3.2 Contours of contact asperities (a) general power-form surface contour 

z A r  [153]; (b) surface contour with different asperities used in DEM simulations. 

The figure is reproduced from [156]. 

The tangential force between two contacting particles is computed with an extension 

of the Hertz-Mindlin-Deresiewicz theory, which accounts for the three-dimensional 

arbitrary normal and tangential contact movements. The detailed theoretical argument 

and numerical implementation are presented in [154, 155]. The equations of motion in 

Equation (3.1) are solved via an explicit central difference algorithm. Within each 

incremental updates for the displacement and rotation of each particle, scaled time step 

and unit mass are used to obtain quasi-static responses via dynamic relaxation [57]. 

For a unit cell composed of a collection of particles, the macroscopic Cauchy stress 

tensor of the particle assemblies can be recovered via spatial homogenization [23], virtual 

work principle [157] or GMH (Generalized Mathematical Homogenization) [57], which 

all lead to, 

 
1

1 cN
n n

ij i j
n

l f
V

  (3.4) 

where n
jf  is the contact force at contact point n ; nil  is the branch vector connecting the 

centers of two contacting particles at n , and cN  the total number of contacting particle 

pairs in the volume V  of the unit cell.  
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To expand the material database using DEM, one must first calibrate the material 

parameter of the particle and generate granular assemblies using the physical 

experimental data. Following this calibration step, the DEM is employed to expand the 

material database for a specific type of granular materials, such as sand and slit.  

3.2.3 Observation-based phenomenological model: Dafalias-Manzari critical state 

plasticity model 

In this study, we adopt the model proposed by Dafalias and Manzari in [15] as the low-

fidelity phenomenological model and calibrate it with the expanded database. Notice that 

the multilevel calibration framework proposed in this study is also applicable to other 

critical state plasticity models for granular materials (e.g. [158-161]). The Dafalias-

Manzari model is selected, as the test bed, because it is relatively easy to implement and 

has been widely adopted. To enhance the accuracy and predictability of the 

phenomenological model, a larger set of material parameters is typically required to 

govern the evolutions of internal variables. For comprehensive phenomenological  

models for granular materials, such as the critical state plasticity model of Dafalias and 

Manzari [15] considered in this study, considerable experimental database is required to 

identify the loci of yield surface and the size and shape of the limited surfaces.  

Dafalias and Manzari [15] model (DaMa) is a comprehensive critical state plasticity 

model employing state parameters for modeling mechanical behavior at various densities 

and confining pressures under monotonic and cyclic loading conditions. It combines the 

concepts of bounding surface model and critical state generalized plasticity concept to 

form an elegant model that accounts for fabric-dilatancy quantity and the effect of fabric 

changes to predict stress-strain relations under various drainage and loading conditions. 

For completeness, the multi-axial formulation of the DaMa model is briefly described in 

this section. Interested readers are referred to the original papers cited above.  

In the DaMa model [15], the strain increments are decomposed into elastic and 

plastic parts. The elastic parameters 0G  and  define the nonlinear hypo-elastic behavior: 
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where 0G  is a material constant, is Poisson’s ratio, e  is the current void ratio, and atp  

is the atmospheric pressure. Both 0G  and  are independent of applied stress path and 

can be obtained from small strain monotonic shearing behavior. 

The yield surface is defined as  

 
1 2

, , 2 3 0ij ijf m r r mp   (3.6) 

 ij ij ijr s   (3.7) 

where m  is the size of the yield surface, ijs  is the deviatoric stress tensor, and ij  is the 

deviatoric back stress tensor which describes the kinematic hardening of the yield surface 

by indicating the location of the center of the yield surface. 

The critical state of a soil [14] refers to a continuous flow state with constant stress 

and constant volume in granular soil. In this model, the critical state of a soil [162] is 

defined to satisfy simultaneously the conditions cq q , cp p , ce e , c cq p M  

as well as the equation of critical state line (CSL) in e p  space [163] 

 0
c c

c c
at

p
e e

p
  (3.8) 

where cq , cp , M , 0
ce , c  and  are scalar parameters obtained from interpolating the 

mean stress 1 32 3p , deviatoric stress 1 3q  and the void ratio e  at 

the critical state. Here, 0
ce  denotes the void ratio at 0cp . The bounding surface is 

associated with the maximum peak stresses ratio state that can be attained, and the 

dilation surface represents the condition at which the contractive soil behavior changes to 

dilative. The bounding surface and the dilation surface are constructed to comply with the 

critical state theory in the following form which are dependent on the Lode angle : 
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e

c
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where the superscript a  may take three values of b  (for bounding surface), d  (for 

dilatancy surface) and c  (for critical surface); bn  and dn  are positive scalar constants 

which control the size of the two limit surfaces, respectively; ,g c  is the scaling 

function used for generalization of surfaces from triaxial space to multiaxial space; and c  

is referring to the ratio between the critical state stress ratios in compression and 

extension. For simplicity, c  is a common parameter for all three surfaces. It is seen from 

Equations (3.9) to (3.11) that the bounding and dilation surfaces tend to coincide with the 

critical state surface as 0 . The yield surface governed by pure kinematic hardening 

law translates in the stress space. The state parameter ce e  proposed by Been and 

Jefferies [164] is used to measure the distance from the current state to the critical state.  

The evolution of hardening modulus pK  and plastic dilatancy D  are described as 

functions of the relative distance between the image back stress ratios, b
ij  and d

ij

respectively,  and the back stress of the yield surface ij , given by, 

 
2

3
b

p ij ij jiK ph n   (3.14) 

 d
d ij ij jiD A n   (3.15) 

where h  is a positive scaling function defined by positive constants 0h  and hc   
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0 0 0 0with 1b in
ij ij ji h ath b n b G h c e p p    (3.16) 

And the positive scaling function dA  for dilatancy is affected by the fabric changes 

such that 

 0 max1 with p
d ij ji ij z v ij ijA A z n z c z n z   (3.17) 

where ijz  denotes the fabric-dilatancy internal variable, 0A  and maxz  are material 

constants which control the pace of evolution of ijz . The Macaulay brackets  

representing x x  if 0x  and 0x  if 0x . Equations (3.14) to (3.17) 

dictate the mechanism of the effect of fabric change on dilatancy upon load increment 

reversals.  

Therefore, a total set of 15 model parameters are required to completely define the 

DaMa model. These parameters can be categorized into three groups, namely, elastic 

parameters, critical state parameters, and model specific parameters [144, 165, 166]. The 

parameters in each group are: 

 Elastic parameters: 0G  and   

 Critical state parameters: M ,c , c , 0
ce  and   

 Model specific parameters: yield surface parameterm , hardening constants

0, , bhh c n , dilatancy constants 0,
dA n , and fabric-dilatancy constants

max, zz c  

3.2.4 Calibration through constrained optimization 

The parameter identification process is formulated as a constrained optimization problem 

in which the objective is to identify an optimal set of parameters that minimizes the 

discrepancy between the simulated response by DaMa and the data housed in EDD in the 

least square sense. In other words, the optimization problem is an iterative process in 
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which material parameters are modified in each trial based on the results of the inverse 

problem until the predicted data best fits the target data housed in EDD.  

Let us denote the model parameters to be calibrated by θ 1N , where N is the 

total number of parameters. In the present study, θ  consists of fifteen DaMa model 

parameters (N = 15), i.e., cθ 0 0 0 0 max, , , , , , , , , , , , , ,
Tc b d

c h zG M e m h c n A n z c .  

We define an objective function representing the discrepancy between the target 

response quantities from EDD and the predicted data obtained by DaMa model as 

 θ θ θ
1

2
Tf r Wr  (3.18) 

where θ 1SLr  is the residual vector and SL SLW  is the diagonal weight 

matrix, given by 
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in which 1 2, ,...,
T

i i i iLy y yy  and θ θ θ θ1 2, ,...,
T

i i i iLy y yy  are the 

target response quantities and the predicted data, respectively, of the ith data set 

( 1,2,...,i S ); iw  is the weight coefficient of the ith data set; L LI  is an identity 

matrix; S is total number of target data sets; and L is total number of data points of the 

target response quantities. 

For example, in our implementation, both the stress-strain behavior and the evolution 

of void ratio are considered in the curve fitting process for each test (e.g., L = 2). Thus, 

the target response quantities and the predicted data can be expressed as  
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where q  denotes the deviatoric stress, 0p  is the initial mean stress, and e  is the void ratio. 

The goal is to minimize the objective function θf  and to obtain the best set of 

model parameters. Therefore, the constrained optimization problem can be stated as: 

 
θ

θ θˆ arg min 1,2,...,lb ub
j j jf j N  (3.21) 

where lbj  and ubj  denote the lower and the upper bound of the jth parameter, and θ̂  

denotes the calibrated model parameters that best fit the target database. 

 We employ the Gauss-Newton Trust Region algorithm [167] to solve the 

optimization problem in Equation (3.21). In the optimization process, the parameters are 

updated by the iterative process given by 

 θ θ θ
1

1
T T

k k k k k kJ WJ I J Wr  (3.22) 

where k is the iteration number index; θk  denotes the active parameter set (i.e., θ θk k );

 is the Levenberg-Marquardt parameter [168] which can be determined iteratively; r  

and W  contain components of r  and W , respectively, for model parameters inside the 

bounds; kJ  is the Jacobian of θkr , namely, θpj
k p k jJ r , where 

1,2,...,p SL  and 1,2,...,j N . Herein, we approximate the Jacobian components 

using central difference method, v.i.z.,  

1 1 1 1 1 1,..., , , ,..., ,..., , , ,...,

2
p j j j j N p j j j j Npj

j

r r
J  (3.23) 

where j  is an infinitesimal perturbation. It is noteworthy that Equation (3.23) is guided 

by an active parameter strategy, which imposes simple bounds on the trust region 

represented by radius  [167]. In addition,  is selected to ensure that the solution 
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updates lie within the trust region. The two parameters  and  are computed using a 

locally constrained hood step algorithm [34]. 

The optimization is completed and a set of parameter θ̂  is returned when the 

following criteria are satisfied: 

      θ 1: , 8
1 20.01 and 1 10 1,2,...,SL j

k kC f C j NJ  (3.24) 

where  denotes the 2L  norm of a vector and 1:SL denotes the first SL rows in a matrix. 

3.3 Calibration and prediction of DEM model 

In this study, we test the proposed multilevel calibration procedure with the Nevada sand 

dataset from published literature. We choose the Nevada sand as the test bed due to the 

large amount of existing data generated in the past decades. For this purpose, laboratory 

tests performed on this sand by Earth Technology Corporation in the course of the 

Verification of Liquefaction Analysis by Centrifuge Studies (VELACS) project [169] 

were used. The objective is to use well-calibrated DEM assemblies as virtual specimens 

and conduct high-fidelity micro-scale (DEM) simulations on those DEM assemblies to 

generate the necessary constraints to calibrate the DaMa model when experimental data 

alone is insufficient. The generalized procedure of the calibration process can be 

described as follows: (i) construct DEM assemblies with the goal of approximating the 

behavior of Nevada sand, (ii) calibrate the DEM model parameters based on the lab 

experimental data, (iii) carry out DEM simulations subjected to loading paths that are not 

considered in the lab tests, (iv) expand the database by adding the DEM simulated 

responses to the experimental database and form the EDD, and (v) calibrate the 

constitutive model parameters based on the EDD. 

In this section, the DEM assemblies are created and calibrated to approximate the 

behavior of Nevada sand at different relative densities and confining pressures against the 

experimental data from lab test reports [169, 170]. The DEM simulations were conducted 

using the open source DEM code OVAL [90].  
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3.3.1 RVE generation 

The macroscopic mechanical behavior of granular materials depends on both the material 

properties of particles and the topological features of the grain assemblies. The discrete 

element method provides a convenient tool to explicitly model this particulate nature but 

is also more computationally expensive than continuum model. As result, the DEM is 

chosen as the high-fidelity model to expand the material database.  In this study, we 

assume that the material database contains only macroscopic constitutive responses 

obtained from conventional shear, plane strain and triaxial loading experiments.  

Microscopic data that require unconventional experimental techniques to obtain (e.g. 

position vectors of individual particles, topology of void space, and the scale of 

fluctuation of material parameters within specimen) are not considered [32, 33, 98, 171]. 

Such a consideration is reasonable for engineering practice in which microscopic data are 

rarely extracted or used due to the associated cost.  

Since we do not employ any microscopic data that explicitly captures the geometry 

of individual grains, we will not attempt to use the corresponding DEM models, such as 

the level-set based potential element method [172] and NURBS-based Granular element 

Method [173], to generate granular assemblies that are compatible to the experimental 

counterpart on a grain-by-grain basis. Instead, our goal is to generate RVE that has the 

compatible initial relative density, grain size distribution, and constitutive responses to 

those of the experimental counterpart. In this study, we adopt the particle assemblies 

from Kuhn et al. [156], which are composed of bumpy particles formed by lumping 

overlapped spheres together. As shown in [174], those assemblies composed of bumpy 

particles may yield more realistic friction angles and macroscopic shear strength than 

those composed of spherical particles. Since the angularity and non-symmetry of particle 

shape can be properly replicated bumpy particles, this leads to improvement in capturing 

the interlocking among particles and the greater resistance of particle rotation.  As a 

result, the increase in the deviatoric stress to the peak value and in the volumetric strain 

with the angularity commonly observed in experiments can be replicated with bumpy 

particles.  
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In this study, a bumpy, compound cluster shape with a large central sphere with six 

embedded satellite spheres in an octahedral arrangement was chosen, which was studied 

and presented by Kuhn et al. [156]. This shape has proven to be sufficiently non-round to 

produce a target range of initial densities and realistic strength.  A total number of 6400 

bumpy elements from an assembly that represents a unit cell at the material point, which 

are found to be large enough to capture the overall stress-strain response of material but 

sufficiently small to prevent mesoscale localization and BC-induced nonuniformities (e.g., 

shear bands, footings, excavations) [156].   

The particles in the grain assembly are scaled such that the grain size distribution of 

the DEM assembly is close to those of the real Nevada sand. The resultant virtual 

specimen has a grain size distribution with median particle size 50 0.165mmD and a 

coefficient of uniformity 2.0uC , comparing with the lad tests data 50 0.165mmD  

and 2.2uC  [169] (see Table 3.1). A comparison of the physical properties between 

lab test samples for Nevada sand and the DEM assembly of virtual particles are shown in 

Table 3.1. 

Table 3.1 Physical properties of Nevada sand and DEM assemblies used in this study 

Sample 

Mean grain 

size

50 mmD  

Uniformity 

coefficient

60 10uC D D  

Max void 

ratio mine  

Min void 

ratio maxe   

Void ratio at different rD   

40%rD
e

 

60%rD
e

 

89%rD
e

 

Nevada 

Sand [169] 
0.165 2.2 0.511 0.887 0.736 0.661 0.552 

DEM 

assembly 
0.165 2.0 0.525 0.850 0.720 0.655 0.560 

 

The 6400 bumpy particles were initially sparsely distributed in a space cell 

surrounded by period boundaries. By repeatedly assigning random velocities to particles 

and reducing the assembly height, fifteen assemblies with initial void ratios in the range 

of 0.850 0.525were created. Each assembly was then isotropically consolidated to a 

target mean effective stress from 10kPa to 400kPa for subsequent computations involving 



Chapter 3. Determining Material Parameters for Critical State Plasticity Models Based On Dual-

Scale Extended Digital Database 

70 

micro-parameter calibration and digital database enrichment. It is noted that tests under 

even higher consolidation stresses may lead to particle breakage and grain crushing [175-

177] when the stress applied on the soil particle exceed its strength, which is beyond the 

scope of this study.  

Due to the disparity in shapes between natural sand and DEM particles, the real and 

numerical specimens may have different ranges of attainable porosity. As a result, 

minimizing the discrepancy of the numerical and experimental void ratios may not lead 

to comparable state condition in granular materials. As a result, we conduct a numerical 

relative density test to obtain the maximum and minimum void ratio of the granular 

assemblies, and the notion of relative density was chosen as a measure of equivalence to 

match experimental and numerical results [174] 

 max

max min
r

e e
D

e e
  (3.25) 

where void ratio e  can be obtained from relative density rD   through the maximum void 

ratio maxe  and minimum void ratio mine  that a sand sample could achieve with standard 

ASTM procedures [178, 179]. The corresponding void ratios at three different relative 

densities used in the following simulations are shown in Table 3.1. To compare the 

results quantitatively, the simulations were accomplished on samples with identical or 

nearly identical relative densities compared with those in target experimental tests. 

3.3.2 Calibration of the micromechanical properties of DEM assemblies 

The micromechanical properties of the aforementioned DEM assemblies have been 

calibrated by Kuhn et al. [156] to capture cyclic liquefaction behavior of Nevada sand. 

The calibration efforts attempt to produce a relationship between small-strain bulk shear 

modulus maxG  and the mean effective stress p  (i.e. 
0.5

maxG p ), and to achieve 

maxG  with a target value of 90MPa at a mean effective stress of 80kPa [180, 181]. The 

same set of model parameters obtained by Kuhn et al. [156] were used throughout all the 

DEM simulations in this study, as shown in Table 3.2. For detailed processes on particle 
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assembly preparation and guidance on model parameter calibration, interested readers are 

referred to [156, 174, 182]. 

A series of undrain and drained triaxial compression and extension simulations were 

carried out on the samples studied above. The shear stress-strain (octahedral) responses 

recorded during the computations were compared to experimental data [169] in Figure 

3.3 through Figure 3.10.  

Table 3.2 Micromechanical parameters for DEM computations 

29.0 

0.15 

0.60 

0.20 

0.30 

0.00 

5.3 

1.3 

Shear modulus G (GPa) 

Poisson ratio 

Coefficient of friction at particle-particle and particle-wall contacts 

Viscosity coefficient for translational body damping 

Viscosity coefficient for rotational body damping 

Viscosity coefficient for contact damping 

Jäger contact model parameter 1A  

Jäger contact model parameter  

 

 

Figure 3.3 Undrained triaxial compression and extension of DEM simulations at three 

densities, comparing with Nevada sand tests at relative density of 40% with initial 

confining pressure of 40kPa, 80kPa and 160kPa (stress paths) 
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Figure 3.4 Undrained triaxial compression and extension of DEM simulations at three 

densities, comparing with Nevada sand tests at relative density of 40% with initial 

confining pressure of 160kPa (stress-strain curves) 

To match the monotonic undrained triaxial compression and extension tests for 

Nevada sand at 40% rD , two assemblies with initial void ratios (0.732 and 0.707) that 

straddle the target void ratio 0 0.720e (see Table 3.1) were considered. Before triaxial 

loading, the assemblies were isotropically consolidated to the mean effective stress 0p  

corresponding to the experiments’ confining stresses, e.g. 40kPa, 80kPa and 160kPa, 

respectively. The mean effective stress p was computed from initial confining pressure 

and pore-water pressure p p u . Loading was applied in the z  direction with a small 

strain increment 75.0 10zz  to maintain nearly quasi-static conditions. For 

undrained tests, zero volume-change conditions were applied by constantly adapting 

assembly deformations in x  and y  directions so that 1 1 1 1xx yy zz . 

Figure 3.3 and Figure 3.4 show the undrained behavior for these two DEM assemblies in 

triaxial tests, respectively. The undrained stress paths of the two DEM assemblies shown 

in Figure 3.3 depict the constitutive responses of Nevada sand observed in the laboratory 

tests, i.e. the stress paths converge to substantially the same critical state lines (CSL) in 

both extension and compression tests at larger strains. During extension tests, strain 
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softening behaviors are observed at small strains, followed by a pickup of strength at 

phase transformation (PT) points. It can be seen that a good match occurred in the triaxial 

compression tests at confining pressure 80kPap and 160kPap . However, the 

small strain portion in 40kPap compression tests differed from the experiment curve. 

Better overall agreement is achieved at assembly with 0 0.707e . The q -axial strain 

curves predicted by DEM simulations in Figure 3.4 exhibit the correct trend with the 

experiment data in small strain regime. 

Figure 3.5 and Figure 3.6 show the DEM simulations along with the experimental 

results of drained monotonic compression constant-p  tests with initial relative density of 

about 40%. Reasonably well agreement in the q p  plots (Figure 3.5(a)) with 

experimental results was achieved for both densities 0 0.732e  and 0 0.707e  at 

various confining pressures. The volumetric curves in Figure 3.5(b) and Figure 3.6(b) 

show that the calibrated DEM model can predict the volumetric strain reasonably well in 

the small strain region, particularly within 4%. Nevertheless, the discrepancy in 

volumetric responses gradually grows beyond this strain level, and the over-prediction of 

volumetric strain in DEM becomes apparent, even though the deviatoric stress of the 

simulated and experimental simulations remain roughly compatible. This discrepancy in 

volumetric responses may be attributed to the discrepancy in particle shapes and 

arrangements, the over-simplification of contact laws, and the effect of boundary 

conditions. Presumably, incorporating microscopic experimental data via particle 

tracking techniques as well as more advanced DEM models to replicate the real particle 

shapes can reduce these discrepancies. These possible research directions will be 

explored in subsequent studies, but is out of the scope of this work. 

The DEM predictions for 60% rD  triaxial tests under undrained and drained 

conditions are shown in Figure 3.7 through Figure 3.10. Two assemblies were considered 

for comparison with initial void ratios 0 0.674e  and 0 0.640e . Similar trends are 

observed in the 60% rD  drained and undrained tests. 
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(a) 

 

 (b) 

Figure 3.5 Drained triaxial compression (constant p  ) of DEM simulations at 

0.732e  , comparing with Nevada sand tests at relative density of 40% with initial 

confining pressure of 40kPa, 80kPa and 160kPa: (a) stress paths and (b)volumetric curves 

 

 

(a) 

 

 (b) 

Figure 3.6 Drained triaxial compression (constant p ) of DEM simulations at 0.707e  , 

comparing with Nevada sand tests at relative density of 40% with initial confining 

pressure of 40kPa, 80kPa and 160kPa: (a) stress paths and (b)volumetric curves 
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Figure 3.7 Undrained triaxial compression and extension of DEM simulations at three 

densities, comparing with Nevada sand tests at relative density of 60% with initial 

confining pressure of 40kPa, 80kPa and 160kPa (stress paths) 

 

 

Figure 3.8 Undrained triaxial compression and extension of DEM simulations at three 

densities, comparing with Nevada sand tests at relative density of 60% with initial 

confining pressure of 160kPa (stress-strain curves) 
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(a) 

 

 (b) 

Figure 3.9 Drained triaxial compression (constant p ) of DEM simulation at  

0 0.674e , comparing with Nevada sand tests at relative density of 60% with initial 

confining pressure of 40kPa, 80kPa and 160kPa: (a) stress paths and (b)volumetric curves 

 

 

(a) 

 

 (b) 

Figure 3.10 Drained triaxial compression (constant p’) of DEM simulations at 

0 0.640e , comparing with Nevada sand tests at relative density of 60% with initial 

confining pressure of 40kPa, 80kPa and 160kPa: (a) stress paths and (b)volumetric curves 
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The above figures showcase how well the high-fidelity DEM model replicate the 

pressure-sensitive responses of Nevada sand. We observe that the particle assemblies 

composed of bumpy particles are able to reproduce the shear responses and friction 

angles observed in triaxial experiments conducted at different confining pressure levels.  

Nevertheless, a sizable discrepancy in volumetric responses at finite deformation range is 

also noticed.  These results imply that the DEM model currently employed in this study is 

a reasonable high-fidelity model when the strain-level is small. Nevertheless, caution 

must be exercised when interpreting the volumetric responses from the extended database. 

It is also worthy to mention that results from Kuhn et al. [156] illustrated that the shear 

responses may be artificially stiffen if the load increment is too large.  To avoid this issue, 

the same load increment 75.0 10zz  was used for all of the DEM simulations 

in this chapter. 

3.3.3 Database expansion with virtual tests 

The experimental database was supplemented by simulated constitutive responses 

obtained form DEM simulations. These DEM simulations are conducted with particle 

assemblies of compatible relative densities and with grain-scale contact law parameters 

calibrated from experimental data. In the numerical examples, we limit our scopes on 

predicting the stress paths that were initially isotropic. Hence, the virtual database will 

only contain stress path of particle assemblies that were initially isotropically 

consolidated. The stress paths used for database expansion include 1) monotonic 

undrained triaxial compression (TC), triaxial extension (TE) and simple shear (SS) tests; 

2) monotonic drained conventional triaxial compression (CTC) tests; 3) monotonic true 

triaxial tests with constant mean effective stresses and various loading paths quantified by 

the intermediate principal stress ratio 2 3 1 3b  (as shown in Figure 3.11) 

[183]; 4) cyclic undrained unidirectional simple shear (CySS) and triaxial compression 

tests (CyTC). In this study, 15 DEM assemblies were considered with initial void ratios

e 0.898, 0.789, 0.785, 0.783, 0.767, 0.746, 0.734, 0.707, 0.674, 0.640, 0.609, 0.577, 

0.550, 0.529, 0.512 which were pre-consolidated to different confining pressures
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0 40,80,100,160,300kPap . These initial assemblies were then subjected to different 

loading paths to expand the experimental database. 

 

 

Figure 3.11 Application of major, intermediate and minor principal stresses, 1 , 2  and 

3 , to DEM assemblies in true triaxial tests to achieve all directions in the stress ratio -

plane [183] ( 1s , 2s  and 3s  are deviatoric principal stresses) 

3.4 Identification of Dafalias-Manzari model parameters 

In this section, we present the procedure to identify material parameters using EDD 

concept. We herein use one of the most commonly used critical state plasticity model, 

Dafalias-Manzari (DaMa) model [15], as an example to illustrate how EDD is built, 

calibrated and utilized for material characterization. We want to emphasize that the 

proposed EDD procedure is applicable to other path-dependent materials.  

3.4.1 Identification of DaMa model parameters 

In order to predict the response of soils via a macroscopic constitutive model, it is 

necessary to determine the initial material state, drainage condition, and the model 

parameters. The initial state of soil is described by parameters include the initial effective 

s₁/p

s₃/ps₂/p
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confining pressure, 0p , and initial void ratio, 0e . A set of 15 parameters is required to 

completely define the two-surface elastoplastic model in a fully three-dimensional space. 

These parameters can be grouped into three categories: i) elastic parameters, 0,G ; ii) 

critical state parameters, c 0, , , ,cM e ; and iii) model parameters such as state parameter 

constants ,b dn n , yield surface parameter m , hardening constants, 0, hh c , dilatancy 

parameter 0A  and fabric-dilatancy constants max, zz c .  

In a conventional calibration procedure for determining DaMa model parameters, a 

two-step calibration process is needed. In step 1, the elastic and critical state parameters 

are first manually determined with a high accuracy directly from experimental test data. 

The parameter of elastic shear modulus 0G and Poisson’s ratio  are path independent 

and can be obtained from lease square regression of the small strain monotonic shearing 

behavior at various confining pressures. We assume that the critical state constants 

c 0, , , ,cM e  for a given soil are independent of initial state and loading condition. 

Therefore, the critical state and can be determined through curve fitting from a plot of 

triaxial test data that approach the critical state in ate p p  space. While in Step 2, the 

model specific parameters can be obtained by trial-and-error or through a numerical 

optimization procedure. In many situations, an unbalanced combination of the model 

specific parameters may lead to numerical instability, especially when the mean effective 

stress approaches zero [144]. One possible way to address this issue is to employ a 

multistep characterization process by which only a subset of parameters is characterized 

at a time against experiments that mostly affect these parameters with carefully selected 

upper and lower bounds [34]. 

3.4.2 Parameter identification for Nevada sand 

In this section, a comparison of DaMa model simulations and DEM trained data 

corresponding to monotonic triaxial tests is presented. To study the sensitivity of model 

parameters on different types of tests, material parameters are calibrated against tests 
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under combinations of different initial material states, drainage conditions and loading 

conditions for Nevada sand. The calibrated material parameters are listed in Table 3.3. 

Table 3.3 Model parameters of the DaMa model calibrated for Nevada sand 

Parameter 

function 

Parameter 

index 

Andrade 

et al. 

[166] 

Shahir et 

al. [143] 

Case 

12a 

Case 

1b 

Case 

2b 

Case 

12b 

Case 

2a*# 

Elasticity 0G  125 150 150 150 150 150 150 

v  0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Critical state 

M  1.45 1.14 1.14 1.34 1.34 1.34 1.08 

c   0.78 0.78 0.78 0.78 0.78 0.78 0.78 

c  0.09 0.027 0.098 1.13 1.13 1.13 0.8 

0
ce  0.737 0.83 0.833 0.833 0.833 0.912 0.73 

 1.0 0.45 0.12 0.12 0.12 0.12 1.0 

Yield surface m  0.01 0.02 0.02 0.02 0.02 0.02 0.02 

Plastic 

modulus 

0h  4.5 9.7 9.7 9.416 9.416 9.402 9.25 

hc  1.05 1.02 1.02 1.2 1.28 1.21 1.03 

bn  1.1 2.56 2.56 2.038 2.038 1.307 1.49 

Dilatancy 
0A  0.804 0.81 0.81 0.81 0.796 0.85 0.81 

dn  5.5 1.05 1.05 5.78 1.014 1.78 4.98 

Fabric-

dilatancy 

maxz  10 5 5 5 5 5 10 

zc  500 800 800 800 800 800 500 

Note that the italic symbols appeared after cases have the meaning as follows: 1 denotes loose–medium 

dense samples, 2 denotes medium dense-dense sample, a denotes monotonic undrained triaxial tests, b 

denotes monotonic drained triaxial tests, * denotes tests with variable loading paths, and # denotes 

laoding-unloading tests. 

3.4.2.1 Critical state 

The critical state surface is introduced in the DaMa model to incorporate the critical state 

soil mechanics concept into the bounding surface plasticity model. When the critical state 

is reached, both the bounding surface and dilatancy surface converge to the critical state 

surface in the stress space. On the other hand, both the hardening rule and the amount of 

plastic dilatation is dictated by the distance between both bounding surfaces to the critical 

state surface, and the dilatancy surface to the critical state surface respectively. Therefore, 

determining the location of the critical state surface via calibrating the critical state 
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parameters is crucial to the forward prediction capacity of the calibrated DaMa model. 

The DEM assemblies were deformed through the critical state so as to simulate the 

critical state responses of Nevada sand. The critical state parameters that locate the 

critical state lines in the effective stress and state paths are identified. In the calibration 

process, a constrained optimization procedure is first run to determining the set of the 

critical state parameters c 0, , , ,cM e  that minimize the errors measured by the objective 

function. Figure 3.12 plots the critical state surface in the stress ratio -plane 

corresponding to the calibrated parameters set Case 12b in Table 3.3. The loading paths 

for drained true triaxial tests predicted by DEM simulations and the loading paths for the 

lab experiments are also shown in Figure 3.12. As seen from Figure 3.12, conventional 

lab experiments are conducted in limited loading paths, i.e. triaxial compression ( 0b ) 

and triaxial extension ( 1b ). While using DEM, under constant p  constraint, 1  , 2

and 3  were controlled based on Figure 3.11 to achieve constant b conditions, with b  

values representing different loading directions. The monotonic triaxial tests considered 

in the calibration help improve the DaMa model prediction of deviatoric plastic strain 

under radial monotonic loading. 

3.4.2.2 Monotonic triaxial tests 

Figure 3.13 to Figure 3.16 show the constitutive responses simulated by the DaMa model 

in monotonic drained conventional triaxial compression (CTC) tests for samples of 

various relative densities and initial confining pressures. The parameters referred as Case 

12b in Table 3.3 were used in this set of simulations. The comparison between DEM 

trained data and DaMa model predicted results are presented in terms of q  vs. axial strain, 

and e   vs. p  plots.  These results show the model can produce a reasonably well 

prediction of Nevada sand behavior for a broader range of densities and initial mean 

confining pressures using one set of parameters. 

Figure 3.17 depicts DaMa model prediction results of q p  responses (Case 12a in 

Table 3.3) for monotonic undrained triaxial compression tests. The overall trend of the 
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sand behavior under undrained compression is well captured. It can be observed that in 

higher density and lower confining pressure samples, the sand is highly dilatant, while in 

lower density and higher confining pressure samples, the opposite effect is observed. 

Good agreement of the  responses is obtained for loose and medium dense samples 

(i.e.  = 0.783 and 0.720). However, the DaMa model predicts larger slopes of the CSL 

at large strains for dense samples than what is expected in the trained data. 

 

 

Figure 3.12 Calibrated critical state surface for DaMa model, and the loading paths of 

monotonic triaxial tests for DEM simulations and lab experiments in the stress ratio -

plane ( 1s , 2s  and 3s  are deviatoric principal stresses) 

 

q p

0e



Chapter 3. Determining Material Parameters for Critical State Plasticity Models Based On Dual-

Scale Extended Digital Database 

83 

  

(a) q vs. axial strain (b) void ratio vs. mean effective stress 

Figure 3.13 DaMa model prediction for CTC tests on samples with different initial 

confining pressures ( 0e   = 0.783) 

 

  

(a) q vs. axial strain (b) void ratio vs. mean effective stress 

Figure 3.14 DaMa model prediction for CTC tests on samples with different initial 

confining pressures (  = 0.746) 
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(a) q vs. axial strain (b) void ratio vs. mean effective stress 

Figure 3.15 DaMa model prediction for CTC tests on samples with different initial 

confining pressures (  = 0.640) 

  

(a) q vs. axial strain (b) void ratio vs. mean effective stress 

Figure 3.16 DaMa model calibration for CTC tests on samples with different initial 

confining pressures (  = 0.550) 
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Figure 3.17 DaMa model calibration of  responses for monotonic undrained 

triaxial compression tests on samples with different initial confining pressures and 

densities 
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not used for calibration, Figure 3.18 shows comparisons between predictions from DaMa 

model and verification data for monotinic triaxial compression tests. The verification 

tests consist of both drained and undrained triaxial compression loading paths of an 

isotropically consolidated Nevada sand, in which the DEM virtual simualtions are 

conducted with densities 0e = 0.529 and 0.707 under initial mean effective pressure 0p  = 

100, 200 and 300kPa, respectively. The experimental data from Kutter et al. [184] for 

Nevada sand with 65%rD  and initial mean effective pressure 0p  = 100, 250 and 

400kPa are also compared with DaMa model prediction (see Figure 3.18(c)). The stresss-

strain relation shown in Figure 3.18 indicates that the calibrated DaMa model can also 

produce a reasonably good prediction of Nevada sand behavior for the tests in the 

verification set of EDD. Comparisons of results from Figure 3.18(a) and (b) suggest that 

the calibrated DaMa model replicates the strain-strain curves more accurately at the 

drained limit than those at the undrained limit. Nevertheless, both the drained and 

undrained simulation results are able to predict the friction angle at steady state quite well. 

These well-matched responses are encouraging given the fact that there is no 

microstructural information available to calibrate the high-fidelity DEM model and there 

is no attempt to explicitly model the particle shape variation in this study. 

Another assessment test we conducted is a comparison between the simulated 

undrained cyclic simple shear loading responses predicted by the calibrated DaMa model 

and the experimental data reported in Arulmoli et al. [169] for Nevada sand with 

40%rD  and 0 80kPap . The purpose of this test is to assess how well the 

calibrated low-fidelity model predicts loading paths not included in the EDD database. 

Such a test is important, as the loading histories of soils are often significantly different 

and more complicated than the idealized cases studied in the laboratory. The cyclic test 

was numerically simulated using the DaMa model with parameters of Case 2a*# as 

reported in Table 3.3. In this test, cyclic shearing was applied in the horizontal direction 

in a load-controlled manner with a cyclic stress amplitude of 7.4kPa . Figure 3.19 

compares curves of the shear stress vs. mean effective stress, shear stress vs. shear strain 

and pore-water pressure (PWP) change vs. shear train, obtained from both lab experiment 
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and DaMa model prediction. The comparison shows that the DaMa model predictions are 

qualitatively consistent with the experimental responses. Similar to what was observed in 

the monotonic tests, the discrepancy become evident in the large strain region as shown 

in the shear stress vs. shear strain curve. The inaccurate prediction for the cyclic test by 

DaMa model may be attributed to the fact that most of the experiments used to construct 

the database are monotonic and the DEM model does not reflect the real geometrical 

features of grains, therefore, the parameters calibrated based on such database cannot 

accurately capture the cyclic responses in which the material may undergo very complex 

behaviors, such as multiple phase transformation. In addition, the DaMa model used in 

this study is a small strain plasticity model and does not incorporate the geometrical 

nonlinearity. We found that the accuracy and robustness of the low-fidelity surrogate 

model reduce when the simulated loading paths are different from those available from 

the experimental data (e.g., drained vs. undrained, monotonic vs. cyclic). This 

observation is consistent of the previous studies [65, 144]. Presumably, those issues can 

be resolved by incorporating more advanced high-fidelity method, such as granular 

element method [185] to extend the material database more accurately, and/or more 

comprehensive low-fidelity constitutive models that incorporate more detailed 

mechanisms, such as fabric changes, cyclic mobility and geometrical nonlinearity. Those 

studies will be considered in the future study but is out of the scope of this work. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 3.18 Comparison between DEM verification data and DaMa model prediction for: 

(a) and (b) drained monotonic conventional triaxial compression (CTC) tests, and (c) 

undrained triaxial compression tests (experimental data in (c) are from Kutter et al. [184]) 
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(a) (b) 

Figure 3.19 Undrained cyclic simple shear test for Nevada sand: Dr 40%and 

0 80kPap : (a) experimental data from Arulmoli et al. [169]; (b) Dafalias-Manzari 

model prediction. 
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3.6 Conclusions 

In this chapter, we present a new simulation-based database extension technique aimed at 

calibrating comprehensive critical state plasticity models with limited available 

experimental data. By utilizing a high-fidelity model (DEM) that has been calibrated 

against experiments, additional high-fidelity simulations are used to supplement 

experimental data by the so-called extended digital database (EDD). The EDD essentially 

provide additional constraints essential for identifying the optimized parameter set for the 

low-fidelity phenomenological constitutive models. When experimental data is expensive 

to generate or inaccessible, this approach provides a much-needed alternative. Numerical 

experiments conducted herein show that the proposed multilevel calibration approach is 

capable of obtaining material parameters for capturing the behavior of cohesion-less sand 

under various drainage and monotonic loading conditions, void ratios and confining 

pressures at the small deformation range, but the results are less satisfactory for cyclic 

and large deformation problems. 
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Equation Chapter (Next) Section 1 

 

 

Chapter 4  

A Regularized Phenomenological Multiscale 

Damage Model 

In this chapter, a regularized phenomenological multiscale model is investigated, in which elastic 

properties are computed using direct homogenization and subsequently evolved using a simple three-

parameter orthotropic continuum damage model. This chapter is reproduced from the paper co-authored 

with Vasilina Filonova, Nan Hu, Zifeng Yuan, Jacob Fish, Zheng Yuan and Ted Belytschko, which was 

published in the International Journal for Numerical Methods in Engineering [74]. 

4.1 Introduction 

While importance of multiscale methods has been recognized for several decades, the 

overwhelming computational complexity of these methods precluded their successful 

utilization in practice except for linear problems. It was the outstanding paper of Guedes 

and Kikuchi [35] that provided an eloquent approach to link microstructural data with 

effective linear material properties using asymptotic homogenization theory in 

combination with a finite element method. While mathematical theory of homogenization 

was established more than a decade earlier [186, 187], the paper of Guedes and Kikuchi 

spurred tremendous interest in computational mechanics community. From 

computational point of view, the O(1) homogenization theory for a periodic linear elastic 

heterogeneous medium requires linear solution of the unit cell model subjected to six 

right hand side vectors. On the other hand for nonlinear problems, computational cost is 

several orders of magnitude higher since nonlinear unit cell problem has to be solved at 
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each macro-element quadrature point, at each load increment and at each Newton 

iteration of the macroscale problem. This is formidable computational cost for large scale 

structural systems. This tyranny of scales can be effectively addressed by combination of 

parallel methods and by introducing an approximate solution of the unit cell problem. An 

approximation of the microscale solution has considerable merit since the macroscale 

quantities of interest are often show little sensitivity to the accuracy of the unit cell 

solution.  In general, an error in the unit cell solution arises due to an approximation of 

the mathematical model and/or discretization of the unit cell model. For instance, the 

Aboudi method of cells [188, 189] that found its way into commercial grade multiscale 

software [128] belongs to the latter category. Other noteworthy contributions belonging 

to the latter category are Voronoi cell method [190, 191] and the spectral method [192]. 

There are two approaches belonging to the category of approximate mathematical models, 

namely, (i) the reduced order models and (ii) the phenomenological models, both 

schematically depicted in Figure 4.1. 

 

Figure 4.1 Idealizations of the micromechanical model (center): reduced order model 

(left) and phenomenological model (right) 

 

Development of reduced order models for heterogeneous continua has been an active 

research area in the past decade. Perhaps, one of the oldest reduced order approaches is 

based on purely kinematical Taylor’s hypothesis which assumes uniform deformation at 

the fine scale; it satisfies compatibility but fails to account for equilibrium across 

   Micromechanical model                                   Reduced order model                                   Phenomenological model                                   
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microconstituents boundaries. A major progress in reduced order modeling (at the 

expense of computational cost) has been made by utilizing meshfree reproducing kernel 

particle method (RKPM) [193, 194], methods based on control theory including balanced 

truncation [195, 196], the optimal Hankel norm approximation [197], and proper 

orthogonal decomposition [198], the Transformation Field Analysis (TFA) [199, 200] 

and the reduced order homogenization methods [39, 201-206].   

In this chapter we focus on the second and the oldest category of approximate 

mathematical models, namely the phenomenological models. We limit our discussion to 

brittle materials governed by continuum damage mechanics. There is a considerable 

literature on phenomenological multiscale models in particular for composites (see [207-

215] and references therein). The primary goal of this chapter is to develop a simple 

phenomenological model that possesses the following characteristics: 

(i) Accurate resolution of microscopic fields for linear heterogeneous materials. 

Since the cost of direct homogenization for linear problems is a small fraction of 

the overall computational cost, no approximation (except for periodicity 

assumption) should be introduced for linear problems. 

(ii) The lowest number of state variables. The goal is to be able to analyze complex 

microstructures (woven and fabric composites) with minimal number of state 

variables.   While in general, damage evolution in complex materials may require 

second, fourth or even eighth order damage tensors, we show that reasonably 

accurate results can be obtained with just three damage variables defined in 

principle directions of the effective strain tensor (defined in Section 4.3). 

(iii) A unified regularization scheme. We present a unified regularization framework 

to analyze material response in post failure regime. We define an effective 

softening strain and introduce a unified regularization scheme for both 

constitutive law rescaling models [216] and nonlocal models [73]. 

(iv) Regularized element erosion (deletion) scheme. Despite its simplicity crack 

propagation by element erosion has been a subject of considerable criticism due 

to its inconsistency with fracture mechanics, lack of characteristic length and 
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pathological mesh sensitivity. We show that the element erosion technique when 

exercised with one of the two regularization schemes does not suffer of the above 

shortcoming and can reproduce experimental data. 

 

4.2 Linking micromechanical and phenomenological continuum 

damage models 

Consider a periodic unit cell where elastic microstructural phases, such as inclusion and 

matrix phases, possess microcracks. Assume that each microphase can be adequately 

modeled using continuum damage mechanics (CDM). An overall response of the 

composite can be obtained using nonlinear homogenization (see for instance [34, 35]). In 

the two-scale asymptotic mathematical homogenization theory, various fields are 

assumed to depend on two coordinates: x - as the coarse-scale (macro) position vector in 

the coarse-scale domain  and y - as the fine-scale (micro) position vector in the unit 

cell domain . These two coordinates are related by =y x  with 0 1  . The 

unit cell domain  is typically chosen to be an open rectangular parallelepiped 

 1 2 30, 0, 0,l l l   (4.1) 

The fine-scale structure of the unit cell can be either periodic or random, but the 

solution is assumed to be locally periodic [186, 187]. The volume of the unit cell is 

denoted by .  

Various fine-scale response fields, such as the stress ( , )f
ij x y  in the unit cell domain, 

are assumed to be locally periodic in  

 ( , ) ( , )f f
ij ijx y x y kl  (4.2) 

Since each microconstituent remains elastic, the fine-scale stress field ( , )f x y  in 

the unit cell can be described in terms of the coarse-scale stress ( )x and the 

instantaneous stress influence functions ( , )M x y , which depend on the current state of 

damage (or microcracking) 
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 ( , ) ( , ) ( )f
ij ijkl klMx y x y x   (4.3) 

where ( , )ijklM x y can be computed by solving linear elastic boundary value problem of a 

unit cell subjected to various unit overall stresses. From Equation (4.3) the average stress 

within a micro-phase  is given by  

 

1
( , ) ( ) ( )

1
( ) ( , )

f
ij ij ijkl kl

ijkl ijkl

d M

M M d

x y x x

x x y
  (4.4) 

where  denotes the volume of the micro-phase  and  ( )ijklM x  is the 

instantaneous phase stress influence function. 

For nonlinear problem with evolving crack/voids, ( )ijklM x has to be repeatedly 

recomputed, which presents the computational bottleneck. Thus an approximation in the 

form of phenomenological modeling will be subsequently pursued. 

To establish the link between the micromechanical (direct homogenization) and 

phenomenological approaches, the stress phase influence function ( )ijklM x  is 

approximated using multiplicative decomposition as 

 ( ) ( ) ( )
el in

ijkl ijst stklM M Mx x x   (4.5) 

where ( )
el
ijstM x is damage-free (i.e., free of  cracks or voids) stress influence function in 

phase  and ( )
in
ijstM x is a damaged-induced correction. The latter is closely related to 

the reduced order homogenization [39, 201-206] where ( )
in
ijstM x is related to the 

eigenstrain influence functions. Further approximation is introduced by smearing the 

inelastic influence functions as follows 
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 ( ) ( )
in in
stkl stklM Mx x   (4.6) 

Substituting Equation (4.6) into Equations (4.4) and (4.5) yields 

 ( ) ( ) ( )
el in

ij ijst stkl klM Mx x x   (4.7) 

Summing Equation (4.7) over all microphases yields 

 ( ) ( ) ( )in
ij stkl klMx x x   (4.8) 

where we took advantage of the well-known property of elastic influence functions 

( )
el
stkl stklM Ix . In Equation (4.8), ij is so-called effective stress in the 

homogenized (anisotropic) elastic unit cell having discrete defects. It is instructive to 

point out that 

 
1

( , )f
ij ij ijdx y   (4.9) 

Hereafter, for simplicity of nomenclature we will omit dependence on x. 

4.2.1 A simple orthotropic damage model 

We consider three Cartesian coordinate systems: the global coordinate system (GCS), 

denoted by x, the fixed material coordinate system (MCS) where the damage-free 

orthotropic constitutive equations are defined, denoted by x , and the instantaneous 

damage coordinate system (DCS) where damage evolution laws are defined, denoted by 

x . Various tensor quantities, such as stress   and damage-free elastic constitutive tensor 

L  can be defined in various coordinate systems 

   
e e e e e e

L e e e e e e e e e e e e

ij i j ij i j ij i j

ijkl i j k l ijkl i j k l ijkl i j k lL L L


   (4.10) 

where the unit vectors and tensor components transform as  
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e e e e e eˆcos , , cos ,

,
ˆ,

i j i j ji j i j i j ji j

pq ip jq ij pq ip jq ij

pqst ip jq ks lt ijkl pqst ip jq ks lt ijkl

x x Q x x Q

Q Q Q Q

L Q Q Q Q L L Q Q Q Q L

  (4.11) 

Following continuum damage formulation originally proposed by Chow and Wang 

[217], the stress ij is related to the effective stress   in the DCS by 

 , ,ij ijkl I II III klW w w w   (4.12) 

where , ,I II IIIw w w  are three damage parameters defined in the DCS;  ijklW  is a fourth 

order damage tensor possessing major and minor symmetries. ijklW  in the matrix form is 

denoted by W  and is defined as 

4

4

4

1 0 0 0 0 0

1 0 0 0 0

1 0 0 0

1 1 0 0

. 1 1 0

1 1

I

II

III

II III

I III

I II

w

w

w

w w

sym w w

w w

W  (4.13) 

The damage tensor   ijklW  is related to in
ijklM  (see Equation (4.8)) in the damage 

coordinate system by 

 
1in

ijkl ijklW M   (4.14) 

To obtain the symmetric form of the instantaneous damage-dependent material 

properties in the DCS, denoted by ijklL , we employ the postulate of complementary 

elastic energy equivalence [218] between the  and  

 
11ˆ

ij ijkl kl ij ijkl klL L   (4.15) 

which yields 
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 ij ijmn mn

ijmn ijkl mnpq klpqW W L

L

L
 (4.16) 

where klpqL denotes orthotropic elastic material properties of the crack-free material. The 

instantaneous damage-dependent constitutive tensor in any other coordinate system can 

be obtained by appropriate transformation defined in Equation (4.11). 

Remark 1: The definition of the damage tensor Equation (4.13) reduces to 

1ijklI w  for an isotropic damage model, I II IIIw w w w . This yields an 

isotropic fourth order constitutive tensor 1ijmn ijmnLL . 

To define the damage coordinate system (DCS) we first introduce the effective strain 

tensor e eij i j  . The components of the effective strain ij in the MCS are 

defined as 

 

11

22

33

23

13

12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D

D

D

D

D

D

    (4.17) 

where ijD  are material constants quantifying the sensitivity of various strain components 

to damage accumulation. For instance, if fibers are aligned in ‘11’ direction in the MCS, 

then 11 1D  represents reduced strength due to fiber buckling. On the hand, if the 

material is little sensitive to compression damage in the transverse direction 2, then 

220 1D  for 22 0  and 22 1D  for 22 0 . The value of ijD for i j  

represent sensitivity the shear damage.  

The unit vectors ei  corresponding to the damage coordinate system (DCS) are 

defined as follows 
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 e ei ji jQ   (4.18) 

where ˆ
jiQ are principal directions of the effective strain ij in the MCS, and 

, ,I II III  are the principal values. 

The damage evolution is defined in the DCS based on the value of each principal 

effective strain component, # , where  # , ,I II III : 

For # 0  

 

0
# #

0 1
# # # # #

1
# #

0 ;

;

1 ; ˆ

w G  (4.19) 

For # 0  

 

0
# #

0 1
# # # # #

1
# #

0 ;

;

1 ;

w G  (4.20) 

For bilinear stress-strain relation, the damage evolution equations is given as  

 #
#

a
G b  (4.21) 

and 

 
0

#
1 0

# #

1
;

1 1

a
a b  (4.22) 

where the onset of effective strain 0
#  and the failure strain 1

#  in principal directions 

of the effective strain are obtained from the effective strain failure surface depicted in 

Figure 4.2.   
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Figure 4.2 Effective strain surface in two dimensions. 0 1
# #,  are material constant 

defined in the material coordinate system (MCS). ei , ei are the unit vectors in the 

material coordinate system and in the principal damage coordinate system.  #  are the 

principal values of the effective strain. The dashed line denotes the current (trial) 

effective strain surface. 

Given the onset of the effective strain 0
#  in the material coordinate system, the 

damage initiation surface in the DCS is defined as 

 
0 2 0 2 0 2

1 2 3
0 2 0 2 0 2

1
I II III

x x x
 (4.23) 

Likewise, given the failure strain 1
#  in the MCS, the damage failure surface is 

defined as 

 
1 2 1 2 1 2

1 2 3
1 2 1 2 1 2

1
I II III

x x x
 (4.24) 
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Finally, given the principal damage coordinate system êi , projecting the vectors of 

principal values e0
# # , e1

# # onto the MCS yields 

 ie e# ## # 0,1i
m m m
i Q mx   (4.25) 

Inserting Equation (4.25) into Equations of damage initiation (4.23) and failure 

surface (4.24) yields 

 

12 2 2

1# 2# 3#
# 2 2 2

0,1m
m m m
I II III

Q Q Q
m   (4.26) 

We assume that damage does not heal, i.e. the surface in the effective strain space 

may only expand. In the present chapter we assume that the damage surface maintains its 

ellipsoidal shape; the center of ellipsoidal surface remains fixed; the ellipsoid does not 

rotate, remains symmetric with respect to the material coordinate system, but may expand 

nonuniformly along its three material axes.  

To satisfy the Kuhn-Tucker condition, the maximum damage surface must be 

defined and stored and compared with the value of the current damage surface. Let 

, ,d d d
I II III be the three radii of the current damage surface in the MCS as shown in 

Figure 4.2. Initially, the damage surface coincides with the initial damage surface, 

0 0 0, ,I II III .  

At each increment, we compute the trial effective strain in the DCS, denoted by 

, ,tr tr tr
I II III  and the corresponding principal axes e e e1 2 3, , . If there is at least one 

effective strain vector, e* *
tr , that falls outside the current damage surface (see Figure 4.2), 

i.e.  

 
* 2 * 2 * 2

1 2 3
2 2 2

1 *
d d d
I II III

x x x
 (4.27) 

where 
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 i*ee*
* * *

* *

ii
tr

Qx
  (4.28) 

then the process is inelastic and it is necessary to evolve the damage surface.  

On the other hand, the process is considered to be elastic, if all the three trial 

effective strain vectors are inside the current damage surface, i.e.  

 

i#ee#
#

#

# #

2 # 2 # 2
1 2 3
2 2 2

1 # 1,2,3
d d d
I II I I

i

I
tr

i
trx

x x x

Q

 (4.29) 

In the case of elastic process, the damage surface remains unchanged.   

There are a number of possibilities to evolve the damage surface. In principal, one 

would like to modify (expand) the current damage surface as little as possible provided 

that the damage surface is convex and that the trial effective strain that falls outside the 

existing damage surface (4.27) be returned to the new damage surface. This somewhat 

loose requirement may create complex surfaces that would necessitate numerous state 

variables to track its shape and position. One could impose a restriction that the yield 

surface remains ellipsoid that may expand, rotate and move in the strain space. One may 

further constrain the motion of the centroid and even restrain it from rotation limiting it to 

expansion only. This latter variant, which has been adopted in the present chapter, 

represents a reasonable compromise between the computational efficiency and model 

complexity. With this approach, the new radii of the current damage surface 

, ,d d d
I II III  are rescaled by a factor of * 1s  for every e* *  as follows 

 #*

#* ee*

# * #

#

: 1d ds Q

Q
  (4.30) 

where the scaling parameter is found from solving the nonlinear equation  

 
* 2 * 2 * 2

1 2 3
*2 2 2

1 0
d d d
I II III

x x x
f s s  (4.31) 
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Note that when e*̂  coincides with one of the material coordinate axes, say ei , then 

only one axis *
d of an ellipsoid is rescaled by *1 s . The Newton method is used to 

solve the nonlinear Equation (4.31) with an initial guess of * 0s . The above process is 

repeated for every e** *̂ˆ  with the three ellipsoid radii obtained from the previous update.  

Let , ,d d d
I II III be the final radii of the damage surface and e e e1 2 3, , be the 

current principal directions of the effective strain. The corresponding principal effective 

strains , ,I II III that lie on the current damage surface follow from   

 

12 2 2

1# 2# 3#
# 2 2 2d d d

I II III

Q Q Q
  (4.32) 

Given the principal effective strains , ,I II III  obtained from Equation (4.32), 

the damage state variables # #w G  follow from Equations (4.19) and (4.20). Note 

that once the damage surface encompasses the failure surface fully, 1
# #, #d , the 

value of all damage parameters becomes # 1w  and the damage tensor 0ijklW . 

Consequently, 0ijmnL , and material loses its load bearing capacity at a corresponding 

macro-element quadrature point and there is no longer need to track the evolution of the 

damage surface. Remedies to dealing with softening phenomena and complete loss of 

load bearing capacity are discussed in Section 4.3.   

Given elastic material properties ijklL and weights ijD ,  the current strain kl in the 

GCS and the current damage surface , ,d d d
I II III defined in the MCS, the stress 

update algorithm is summarized in Box 4.1. 
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Box 4.1: Stress Update procedure for an orthotropic damage model 

 

 

Remark 2: If we force the damage surface to be a sphere at all times with a sphere 

radius equal to the maximum principal effective strain, d I , the damage model reduces to 

the classical isotropic damage model. For alternative definitions of the damage sphere 

radius see [214, 219]. 

4.3 The unified regularization scheme 

One of the major shortcomings of continuum damage theories is their pathological 

sensitivity to the mesh size. This is because failure naturally tends to localize to a 

characteristic volume that is typically much smaller than the component (macro) scale.  

From the mathematical point of view, initially elliptic equations in the quasi-static 

loading conditions become hyperbolic.  In dynamics, the initial hyperbolic equations 

become elliptic and the wave speed becomes imaginary. For rate independent strain 

1. Transform the strain from GCS to MCS using ij ki kj klQ Q   

2. Compute the effective strain ij in the MCS using Equation (4.17)  

3. Given ij solve the eigenvalue problem for the principal directions êi  and the 

principal effective strains, referred to as  trial effective strain , ,tr tr tr
I II III  

4. Check if the process is elastic (4.29)  

5. If the process is elastic the damage tensor ijklW  remains unchanged. Go to 7 to 

update the stress 

6. For inelastic process perform the following: 

 For each effective strain vector, e* *
tr , that is outside the current damage 

surface compute the scaling factor * 1s by solving Equation (4.31) 

 Update the radii of the damage surface , ,d d d
I II III using Equation 

(4.30) 

 Compute the principal effective strains using equation (4.32) 

 Calculate the damage state variables # #w G  using Equations (4.19) 

and (4.20) 

 Update the damage tensor using Equation (4.13) 

7. Compute the stress in the principal directions îj using Equation (4.16) 

8. Rotate the stress back to the GCS. 

 



Chapter 4. A Regularized Phenomenological Multiscale Damage Model 

105 

softening materials, remedies range from nonlocal theories to rescaling of damage 

mechanics constitutive laws. An outstanding treatise of the two techniques can be found 

in chapters 8 and 13 of the Bazant and Planas textbook [216] and numerous references 

therein. In this section we show that essentially the two formulations give rise to similar 

results provided that they are driven by the same quantity – so called effective softening 

strain to be subsequently defined. 

 

 

Figure 4.3 (a) Effective stress-strain relation with definition of unloading and 

softening branches. (b) Effective stress-softening strain curve corresponding to the 

effective stress-strain curve in (a). *
#E  is unloading modulus. 

Consider a stress-strain relation in the MCS that exhibits softening behavior as 

shown in Figure 4.3(a).  

 # #f  (4.33) 

where the right subscript # = 1, 2, 3 denotes the three axes in the MCS. 

The effective softening strain, denoted hereafter by #s  , is measured from the 

unloading branch emanating from the peak stress 0
#S   to the softening branch as shown in 

Figure 4.3(b). 0
#  is the effective strain corresponding to the maximum stress 0

#S .   
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The shaded area under the # #  curve in Figure 4.3(a), which is identical to the 

area under the # #s  curve in Figure 4.3(b), is the portion of internal work required 

to fully damage a unit material volume from its initial (possibly) damaged state 

corresponding to peak stress. 

It is convenient to decompose the effective strain in the MCS #  into softening 

branch of the strain #s and the hardening branch of the strain denoted by #h  

 # # #s h  (4.34) 

The hardening part of the effective strain is defined as: 

 
for

for

0 0 0
# # # # #*

##
0

# # #

1

u

S f
E   (4.35) 

Given 0
# # , we can compute #f  from Equation (4.33) and #s  from 

Equation (4.34) which uniquely defines the softening branch of stress as a function of 

softening strain 

 # #sg  (4.36) 

In the local approach considered in the previous section, the damage parameters that 

drive the evolution of failure can be expressed in terms of effective strain in the MCS as 

 # # s#hw G   (4.37) 

We would like to adopt the local approach as long as the equations remain elliptic, 

i.e. there is no softening response, i.e. 0
# #  . At the onset softening response, we 

would like to introduce regularization only into softening strain branch using either 

staggered nonlocal approach (Section 4.3.1) or constitutive law rescaling approach 

(Section 4.3.2) as follows 
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# # s#

# # s# /

nonlocal staggered:   

rescaling:                   e

h R

h R h

w G

w G
  (4.38) 

where 
R

and 
/ eR h

are staggered nonlocal and rescaling operators described in the 

next section; R  denotes the interaction radius assumed to be an intrinsic material 

parameter in the nonlocal theories;  eh  is a characteristic size of an element.  

The two operators introduce regularization that allows to match a certain observed 

physical phenomenon irrespective of mesh density. The nonlocal operator is aimed at 

forcing the discrete (finite element) model to match the observed localization width. The 

rescaling operator, on the other hand, forces the discrete model to be consistent with the 

fracture mechanics approach. 

4.3.1 Staggered nonlocal operator 

In the nonlocal model, the nonlocal field ( )
R

xN of a function ( )x  is computed as a 

weighted average in a spatial neighborhood V  

  ( ) ( , ) ( )
R V

dx x xN    (4.39) 

where neglecting the boundary effects, the kernel function ( , )x   is defined as 

 ,( )

V
d

x
x

x




 
 (4.40) 

In Equation (4.40), r  is a monotonically decreasing nonnegative function of the 

distance r x  , typically described by a Gauss or bell-shaped function. Here, the 

following bell-shaped weight function 

 
if

if

 



22

2
1

( )

0

r
r R

r R
r R

 (4.41) 

is employed due to its simplicity.  
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For computational convenience it is convenient to exploit the information at the 

element quadrature point and thus approximate Equations (4.39) and (4.40) by 

 

 ( ) * ( , ) ( )

( , )
* ( , )

( , )

J I

J I

I I J JR
Q

I J
I J

I J
Q

x x

x
x

x

N




 






  (4.42) 

where Ix  denotes the position of the quadrature point I;  IQ  is a set of quadrature points 

J IQ  adjacent to point Ix     

  ,I I J J IQ R Qx     (4.43) 

where the IQ adjacency information for each quadrature point is precomputed in the 

preprocessing stage. In the staggered nonlocal algorithm [73], the staggered nonlocal 

operator ( )Ix  is defined as  

 if

if

 




 

* *

1
1*

( ) ( , ) ( )

( )    
( )

( )     

J I

I I J JR
Q

i
n I J I

J
n J J I

x x

x

x



 

 


 

  (4.44) 

where the left subscript denotes the load increment and the left superscript denotes the 

iteration count. n  denotes converged local field taken from the previous increment, and 

11
i
n is a local field at the current load increment n+1 and the current iteration i+1. The 

salient feature of the staggered nonlocal operator ( )I R
x is that the adjacent 

information is taken from the previous converged solution.  

Given the effective softening strain s# Ix at various quadrature points and 

assuming that all quadrature points in  IQ  ( J IQ ) have the same MCS, the nonlocal 

staggered effective softening strain is computed as  
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  (4.45) 

4.3.2 Constitutive law rescaling operator 

Consider a discrete finite element model, with a characteristic element volume denoted 

by e . We define the so-called post-peak fracture energy cG , which is the amount of 

post-peak energy removed from the finite element mesh # #0

e e e
s sg d  divided by 

the new surface area eA  introduced  

 # #0

e e e e
s s cg d A G  (4.46) 

where #
e
s is an effective softening strain in an element e and #

e
sg has been defined in 

Equation (4.36).  

In explicit finite element codes, when the material in all quadrature points of an 

element fails completely, i.e., stress reduces to zero due to softening, the element is 

removed from the mesh due to stability. On the other hand, in implicit finite element 

codes, the failed element is most often left to preserve element connectivity. Whether the 

element is removed or not is a matter of computational convenience, but de facto it 

effectively no longer exists, and its absence introduces a new free surface, eA . While the 

exact free surface area eA  created by element erosion depends on the element geometry 

and fracture pattern, it is convenient to introduce an approximation, 

3/e e e eS h , and thus simplify Equation (4.46) as 

 # #0

e e e e
s s cg d h G  (4.47) 
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Note that the condition in Equation (4.47) should be valid for any element size. This 

implies that the function #
e e

sg  should be element size dependent.  

The fracture energy (toughness) cG is material constant that can be obtained from 

either an experiment or from simulation in a uniform finite element mesh where the mesh 

size is equal to the characteristic size of the material, ch . The resulting fracture energy is  

 # #0c s s cG g d h  (4.48) 

Equating Equations (4.47) and (4.48) yields 

 # # # #0 0

e
e e e

s s s s
c

h
g d g d

h
 (4.49) 

A trivial solution that satisfies Equation (4.49) is  

 # #
e c
s se

h

h
 (4.50) 

which yields  

                                                           # #
e e c

s se

h
g g

h
  (4.51) 

Note that in practice, however, the characteristic length ch  may be considerably 

smaller than a structural component size, and therefore a uniform finite element mesh 

with ch  as a mesh size might be computationally prohibitive. Instead, one may choose a 

coarser mesh size r ch h  as a reference mesh and find (or calibrate) a #sg  that will 

reproduce experimental data in terms of the crack length. Then the rescaling process will 

be similar to Equations (4.50) and (4.51) 

 # # # #

r r
e e e
s s s se e

h h
g g

h h
 (4.52) 
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Equation (4.52) suggests that one can utilize the constitutive law ( #sg , #f  

and #G ), calibrated based on the reference mesh rh to compute the constitutive law 

corresponding to arbitrary element size eh  by recalling the effective softening strain 

based on Equation (4.52). The resulting damage parameter can be computed as 

 
h

h

# # # /

s# #/

r e

r e

h s h
r

seh

w G

h

h

  (4.53) 

4.4 Numerical results 

4.4.1 Edge-cracked plate under impulsive loading 

The experiments of edge-cracked plate subjected to a high rate shear impact loading as 

shown in Figure 4.4 were conducted by Kalthoff and Winkler [220]. Two different failure 

modes were observed by modifying the projectile speed 0v . At high impact velocities 

( 0 70v m/s), a shear band is observed to emanate from the notch at an angle of 10  

with respect to the initial notch. At lower strain rate ( 0 33v m/s), brittle failure with a 

crack propagation angle of about 70 is observed, as shown in Figure 4.5. In this chapter, 

only the brittle fracture mode was studied.  

Due to symmetry, only the upper half of the plate is modeled. The boundary 

conditions are applied at the bottom edge of the finite element model, 

0 0andy xu t . The lower part of the specimen is subjected to an impulse load 

along the horizontal direction, which is modeled as a prescribed velocity: 

 

otherwise

0

0

( ) ramp
ramp

v t
t t

tv t

v

 (4.54) 
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where 0 16.5v m/s and 71 10rampt m/s. The material is a steel 18Ni1900 and its 

material properties are: 8000 kg/m3, 190E GPa and 0.30 . 

The plate is modeled using orthotropic damage constitutive model described in 

Section 4.2, with material constants: 42.213 10fG  N/m, 3
0 4.44 10 m and 

shear correction factor of 1. The effective strain was calculated based on in-plane 

principal strains. The model has been implemented in VUMAT of ABAQUS/Explicit. 

The characteristic length of the staggered nonlocal method is chosen to be 0.003m. 

Simulations were made with four structured meshes 25 25 , 50 50 , 100 100 and 

200 200  and two unstructured meshes. Elements in the mesh were eroded once the 

effective strain reached 95% of the fully damaged state. The comparison results using 

rescaling and staggered nonlocal methods are shown in Figure 4.6. 

It can be seen that the two methods show little dependency on mesh size and perform 

quite well in predicting the crack speed and crack path. The average angle of crack for 

the two methods was as follows: 69.8 for the rescaling method and 65.2 for staggered 

nonlocal method. In comparison, the average angle predicted by XFEM in [221] was 

60.7 . The crack path obtained from the rescaling model is the closest to the 

experimental result even though the crack path is not smooth. In addition, the CPU time 

of the rescaling method is significantly lower than using the staggered nonlocal approach.  

Figure 4.6(c) shows the crack propagation path for the rescaling method (two figures 

on the left) and the staggered nonlocal method (two figures on the right) for unstructured 

mesh with equivalent mesh densities corresponding to 100×100 and 200×200 meshes, 

respectively. It can be seen that both methods predicts the crack path quit well. 
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Figure 4.4 Experimental setup and numerically modeled region for the edge-cracked 

plate under impulsive loading 

 

 

Figure 4.5 The experimental crack path reported by Kalthoff and Winkler [220] 
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Figure 4.6 Comparison results for the edge-cracked plate problem for: (a) rescaling 

method, (b) staggered nonlocal method for structured meshes 25×25, 50×50, 100×100 

and 200×200 and (c) unstructured meshes ( 1.0 mm and 2.0 mme
avgh ) with 

characteristic length 3 mm 

4.4.2 Four-point bending test 

In the second example we study a four-point bending of a steel wire reinforced cement 

beam. The experiments were conducted by Jiang et al. [222]. Simulations with a 

considerably large characteristic length were conducted in [73]. The dimensions of the 

(a) 

(b) 

(c) 



Chapter 4. A Regularized Phenomenological Multiscale Damage Model 

115 

beam and loading configuration are illustrated in Figure 4.7. The schematics of the fiber 

distribution along the beam is shown is Figure 4.8. 

Three finite element meshes of the beam considered in the present study are shown 

in Figure 4.9. The steel wire reinforced cement is treated as an orthotropic homogenized 

material. The material is modeled as an orthotropic elastic in linear regime. The damage 

model is assumed to be orthotropic as outlined in Section 4.2.  The effective stress-strain 

relation as assumed to be piece-wise linear with three segments: 0 0,  are the stresses 

and strains at the onset of damage; 1 1,  represent the first linear segment; and 

2 2, 0  at the fully dame state. The model parameters are summarized in Table 4.1 

and Table 4.2. For the rescaling and staggered nonlocal models, the characteristic length 

was calibrated on the coarse mesh. It was found to be equal to 2.6 mm.  

 

 

Figure 4.7 Schematics of the four-point bending test [222] 

 

Figure 4.8 Schematics of the steel wire reinforced cement beam [222] 
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(a) mesh-1, 192 elements 
 

(b) mesh-2, 432 elements 

 

(c) mesh-3, 1008 elements 

Figure 4.9 Three finite element meshes used in this study 

Table 4.1 Effective linear mechanical properties 

11( )E GPa  11( )E GPa  12  11( )G GPa  

8.5 8.49 0.199 3.54 

 

Table 4.2 Model parameters for the orthotropic damage model 

0( )MPa  1( )MPa  1  2  

6.5 2.15 0.0109 0.144 

 

The load versus displacement curves for the four-point bending test simulations are 

illustrated Figure 4.10 for the rescaling and the staggered nonlocal models and compared 

with the experimental data. It can be seen that both the rescaling and nonlocal model are 

practically mesh size independent and show reasonable agreement with the test data.  

Figure 4.11 and Figure 4.12 show that the failure pattern predicted by the rescaling 

and staggered nonlocal approaches, respectively, is in good agreement with experimental 

observations. It can be seen that there is little difference in the results obtained by the 

rescaling and staggered nonlocal approaches. 
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Figure 4.10 Numerical simulation results of load versus displacement for four-point 

bending test using rescaling and staggered nonlocal method with characteristic length of 

2.6 mm. 

 

Rescaling Model (L = 2.6mm) 

Nonlocal Model (L = 

2.6mm) 

(a) 

(b) 
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Figure 4.11 Numerical simulation results using rescaling method for (a) mesh 1; (b) mesh 

2; (c) mesh 3; (c) Photographs of a broken CSS-steel-wire-reinforced cement specimen 

following the four-point bending test. 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Figure 4.12 Numerical simulation results using nonlocal method for (a) mesh 1, (b) mesh 

2 and (c) mesh 3; (c) Photographs of a broken CSS-steel-wire-reinforced cement 

specimen following the four-point bending test. 

 

 

 

(a) 

(b) 

(c) 

(d) 
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4.4.3 Single edge notch bend fracture test 

For the third and final numerical example, we study mode I fracture of a two-dimensional 

triaxially braided carbon (2DTBC) fiber composites. The composite is modeled as 

orthotropic in both elastic and inelastic regimes. Figure 4.13 shows the composite 

architecture of a 0 45 2DTBC used in the present study. Eight braided composite 

consists of fiber mats (axial tows consisting of 80,000 fibers and biased tows consisting 

of 20,000 fibers) stacked together. A vinylester Ashland Hetron 922 resin is the matrix 

material [223]. The effective elastic mechanical properties are summarized in Table 4.3. 

Mode I fracture tests are carried out by using a modified single edge notch bend 

(SENB) configuration. Figure 4.14 shows the configuration and dimensions of the 

specimen. The fracture tests are simulated by using ABAQUS through the user-defined 

subroutine UMAT. Figure 4.15 depicts the three finite element meshes considered in the 

simulation. 

Figure 4.16 compares the simulation and experimental results. It can be seen that 

both methods predict the overall behavior quite accurately with different mesh densities. 

Figure 4.17 compares the failure pattern as obtained in simulations for mesh 1 and 

experiments. 

 

 

Figure 4.13 Architecture of braided composite panel [223] 

 

3 
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Table 4.3 Effective mechanical properties 

11( )E GPa  11( )E GPa  12  11( )G GPa  

68.53 10.78 0.36 4.52 

 

 

Figure 4.14 Single edge notch bend specimen (9mm) [223] 

 

 

(a) mesh-1, 1434 elements 
 

(b) mesh-2, 2632 elements 

 

 (c) mesh-3, 4732 elements 

Figure 4.15 Three finite element meshes used in this study 
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Figure 4.16 Comparison of test data and simulated results 

 

Rescaling Model (L = 2.6mm) 

Nonlocal Model (L = 2.6mm) 

(a) 

(b) 



Chapter 4. A Regularized Phenomenological Multiscale Damage Model 

123 

 

Figure 4.17 Comparison of the fracture pattern as obtained in (a) simulations for mesh 1 

and (b) in the experiments 

4.5 Conclusions 

In this chapter, a regularized phenomenological multiscale model where elastic properties 

are computed using direct homogenization and subsequently evolved using a simple 

three-parameter orthotropic continuum damage model has been developed. A unified 

regularization scheme has been developed in the context of constitutive law rescaling and 

staggered nonlocal approaches. The method has been validated for three problems: (i) 

edge-cracked plate under impulsive loading, (ii) four-point bending of a steel wire 

reinforced cement beam, and (iii) mode I fracture of a two-dimensional triaxially braided 

carbon fiber composite. For all three test problems we show that: (i) the regularized 

(a) 

(b) 
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phenomenological multiscale model is capable of reproducing the test data with each of 

the two regularization technique, and (ii) the simulation results obtained are practically 

mesh size independent.  

The computational cost of the rescaling approach is lower than of the staggered 

nonlocal approach, but the crack propagation path as obtained with the staggered 

nonlocal approach is often smoother.  

Several issues have not been addressed in the present work including: 

(i) Crack propagation in meshes with large element aspect ratio. The rescaling 

approach might be more sensitive to the aspect ratio as it depends on the fracture 

surface introduced by the element deletion.  

(ii) We have not studied crack problems with multiple solution branches that are 

energetically close to each other. Methods based on solution enrichment, such as 

XFEM, might be more suitable in this case.  
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Equation Chapter (Next) Section 1 

 

 

Chapter 5  

Automated Unit Cell Generation 

In this chapter, a robust parametric model is presented for generating unit cells with randomly distributed 

inclusions. The proposed model is computationally efficient using a hierarchy of algorithms with 

increasing computational complexity, and is able to generate unit cells with different inclusion shapes. This 

chapter is reproduced from the paper co-authored with Mahesh Bailakanavar, Jacob Fish and Zheng Yuan, 

which was published in Engineering with Computers [224]. 

5.1 Introduction 

Identification and generation of unit cell geometry is a vital step in the multiscale analysis 

of composite materials. Computational challenges in automatic generation of periodic 

microstructures, such as woven or fabric composites, have been by at large addressed 

(see for instance [225]. However, automatic generation of morphological details of 

materials with randomly distributed inclusions, such as defects in ceramics, hard and soft 

domains in polymers, chopped fiber composites, pore structures in porous and granular 

materials pose new challenges. Typical inclusions like ellipsoids, short fibers, platelets 

and discs found in heterogeneous materials are often of different shape and size.  

Parameters influencing the unit cell geometry are the shape and size of the inclusion, the 

volume fraction and the morphological details like the spatial orientation and spatial 

distribution of the inclusions. Statistical data about such morphological details may be 

obtained from X-ray tomography, and 3D image analysis.  The key challenges that need 

to be addressed when generating the random inclusion unit cells are: 
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i. Accurate representation of the inclusion size and shape to minimize geometric 

approximation errors; 

ii. Generation of unit cells with packing fraction as high as 70%, typically found in 

industrial grade composite materials; 

iii. Determination of the unit cell size that constitutes a macroscopically 

homogeneous material;  

iv. Generation of unit cells in quick succession with maximum computational 

efficiency for utilization in a stochastic multiscale framework. 

A literature review points out to two main approaches being used to generate unit 

cells with randomly distributed inclusions namely the Concurrent Construction (CC) 

method [226-228] and the Random Sequential Adsorption (RSA) method [229-235]. The 

CC method is a two-step procedure. In the first step an initial configuration with an 

ordered packing of the inclusions is generated. In the second step these inclusions are 

perturbed in the phase space until the spatial orientation and distribution as observed in 

the statistical morphological data is achieved. The inclusions are not allowed to intersect 

or overlap as they reorient in the phase space. Duschlbauer et al. [228] used the CC 

method to generate short fiber composite unit cells with random orientations in 2D space. 

For a fiber aspect ratio (AR) of 10, they achieved a maximum of 21% fiber volume 

fraction without allowing any fiber intersections, which is about 75% of the maximum 

unforced packing limit for 2D random fibers [236].  

Inclusions found in physical processes, such as burning of coal char, convective 

burning of porous explosives and regression of solid propellants, are often characterized 

by particular shapes, such as spheres, disks, spherocylinders and perforated rods. 

Lubachevsky and Stillinger [237] generated random packs of disks in 2D space by a 

concurrent construction algorithm. The inclusions start with random positions and 

velocities and they grow uniformly in size from a point in space to jammed disks as they 

move about in space. Stafford and Jackson [238] extended the Lubachevsky-Stillinger 

(LS) algorithm to create packs of non-spherical shapes for modeling heterogeneities in 

energetic materials like gun propellants.  
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In the RSA approach, a point in a given unit cell volume is randomly chosen and the 

first inclusion is placed with its center at the chosen position. Next, another point is 

randomly chosen from the diminished volume in the unit cell and the second inclusion is 

placed at this point. Likewise the process of sequentially and randomly positioning an 

inclusion is continued till the desired volume fraction is achieved or till the jamming limit 

is encountered. This method generates unit cells with non-intersecting inclusions wherein 

the gap between the inclusions is user-defined, typically of the order of inclusion size. 

The RSA algorithm have been employed for generating unit cells with various inclusions, 

including disks [239], spheres [240], ellipsoids [241] and spherocylinders [242]. Böhm et 

al. [230] modified the RSA algorithm to include user specified distance between adjacent 

inclusions to generate unit cells with cylindrical (AR=5) , sphero-cylindrical (AR=5) and 

spherical inclusions with inclusion volume fraction of 15%. Kari et al. [230] also used a 

modified RSA algorithm wherein the unit cells with cylindrical inclusions (AR=10) of up 

to a volume fraction of 25% were generated. For volume fractions greater than 25% 

cylindrical inclusions with decreasing aspect ratios (AR<10) were gradually added after 

the jamming limit.  Pan et al. [235] used another variant of the modified RSA algorithm 

wherein a combination of straight and curved fibers (AR=20) were used to generate unit 

cells with fiber volume fraction of 35%. 

Experimental study [243] of packing of short fibers in random orientation found that 

the packing fraction decreased rapidly with increasing aspect ratio of the rods. A 

theoretical study by Evans et al. [244] suggested that for fibers with AR>10, the fiber 

volume fraction should be proportional to the inverse aspect ratio, yielding a maximum 

fiber volume fraction of 20% for fibers with aspect ratio of 20. Likewise for fibers with 

aspect ratio of 20, Williams et al. [232] reported a maximum volume fraction of 22%, 

while Parkhouse et al. [243] reported a volume fraction of 28%.  Toll [236] reported a 

maximum achievable volume fraction of 18.5% for unforced fiber packing. Toll suggests 

that forced packing of fibers governed by bending of fibers at contact points is imperative 

for attaining higher fiber volume fractions. It is important to note that in all these 

estimates, fibers were considered to be straight and nonintersecting.  
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Either of the methods mentioned above fails to generate unit cells with volume 

fractions as high as 45% found in various heterogeneous materials. A modified RSA 

algorithm by Pan et al. [235] can generate volume fractions of up to 35%. The algorithm 

is computationally expensive as it involves solving optimization problems to identify 

fiber intersection in 2D and 3D space. Additionally the algorithm is not robust and 

versatile to be implemented in a multiscale stochastic framework.  

In the present chapter a parametric model for generating unit cells with randomly 

distributed inclusions is presented. The proposed algorithm possesses superior robustness, 

computationally efficiency and versatility compared to the previously developed RSA 

algorithms:  

i. robustness:  it yields unit cells with inclusion volume fraction of up to 55% for 

random packing and inclusion volume fraction of up to 70% for semi-random 

packing ; 

ii. efficiency: it consists of a hierarchy of algorithms with increasing computational 

complexity;  

iii. versatility:  it generates unit cells with different inclusion shapes.  

In Section 5.2 details of the proposed hierarchical RSA algorithm, hereafter to be 

referred to as HRSA, for various inclusions is presented. A simple algorithm to minimize 

the geometric approximation and mesh discretization errors is presented in Section 5.3.  

5.2 Hierarchical random sequential adsorption (HRSA) 

In this section a robust and computationally efficient unit cell generation algorithm for 

randomly distributed inclusions is presented. The two key features of the proposed HRSA 

algorithm are the capability to generate high packing fractions of up to 45% for 

inclusions with AR>10 and computational efficiency in generating unit cells in a quick 

succession. These two factors have not being addressed at tandem in the literature. These 

two objectives are accomplished by (i) forced packing aimed at achieving higher packing 

fractions followed by (ii) hierarchical inclusion generation strategy aimed at ensuring 
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computational efficiency. The different levels in the HRSA algorithm are illustrated in 

Figure 5.1. A detailed flowchart of the HRSA algorithm is presented in Figure 5.3. 

 

 

Figure 5.1 Hierarchal levels in the HRSA algorithm 

5.2.1 Unit cell geometry definition 

A set of independent user-defined model parameters along with dependent parameters 

uniquely define the unit cell geometry. The set of independent parameters is specific to 

the type of inclusion. The unit cell size is defined as a function of the inclusion’s largest 

dimension. The Hierarchical Random Sequential Adsorption (HRSA) algorithm has been 

developed to include all possibilities of inclusion shapes found in heterogeneous 

materials. The size and shape of the inclusions are chosen based on the X-ray scans. 

Inclusions are approximated by piecewise polygons in 2D space and piecewise polyhedra 

Hierarchical RSA 

 (HRSA) 

Forced Packing Unforced Packing 
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Generate Unit Cell Mesh 
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in 3D space. A methodology to minimize the errors inherently introduced by 

approximating the geometry is built into the algorithm.  

5.2.2 Random and semi-random packing 

Having described the unit cell geometry, the next step in the HRSA algorithm is to 

develop strategies for attaining user-defined inclusion packing volume fractions. This can 

be achieved by unforced or forced packing. Forced packing is imperative in generating 

unit cells with higher packing volume fractions by either varying the size or shape of 

inclusions. For instance, microstructures of materials such as polyurea comprise of soft 

and hard domains. The hard domain comprises of inclusions of varying sizes in the form 

of ellipsoids. In generating such microstructures, first inclusions with highest AR are 

added. Once the jamming point is attained, inclusions with decreasing aspect ratios are 

gradually added.  

For generating packs of spheres with volume fraction greater than 55%, forced 

packing is also accomplished by semi-random packing in which an initially ordered 

packing configuration with a predefined volume fraction is enforced at the beginning, i.e. 

an ordered packing with face-centered cubic (FCC)  structure. Additional inclusions are 

then gradually added to fill the open spaces between FCC particles in the unit cell domain. 

The predefined volume fraction is determined from the user-defined target inclusion 

volume fraction through an empirical relation 

 ;pre f f a b   (5.1) 

where  is the user-defined target volume fraction of inclusions, a  and b  are calibrated 

coefficients, for example, in our implementation values of a  and b  were chosen as  4.4 

and 2.34 for 0.55 0.60 , 3.0 and 1.5 for 0.60 0.70 , 2.0 and 0.80 for 

0.70 0.74 , and 0 and 0.74 for 0.74 . A maximum inclusion volume fraction 

of 78% can be achieved by semi-random packing. 

Microstructures with either a low inclusion aspect ratio or a low volume fraction (i.e. 

55% ) obviate the necessity to forced packing. In generating such unit cells the 
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initial ordered packing is not enforced. Given the set of independent and dependent 

parameters, inclusions are randomly generated and sequentially added in the unit cell 

domain.  

5.2.3 Hierarchical inclusion generation strategy  

Optimization tools have been previously used [235] to check for inclusion intersections in 

3D space.  In the HRSA algorithm, closed form solutions are incorporated to check for 

inclusion intersections in 3D space rather than optimization tools to provide increased 

efficiency. This step is executed after the inclusions are generated in 3D and preceded by 

either the forced or the unforced packing phase.  

The method of separating axis serves as the main engine for checking whether or not 

the inclusions intersect in 3D space. However, the computational cost of this method is 

enormous. To reduce the computational cost, the method of separating axis is preceded 

by hierarchy of less costly methods, such as estimating the distance between inclusions 

and the method of separating planes. Consequently, very few inclusions need to be 

checked for intersections using the method of separating axis and somewhat large set is 

checked for intersections using significantly less costly method of separating planes. This 

results in a significant increase in the computational efficiency of the RSA algorithm. The 

three methods are explained in the following sections in the order of their implementation 

in the algorithm. 

5.2.3.1 Radial distance between inclusions 

This is the first method in the three-step hierarchical approach wherein the computational 

cost is decreased by only considering the inclusions in the near field of the inclusion 

being added and excluding all other inclusions in the far field. It is trivial exercise to 

show that inclusion of any shape can be contained in a convex ellipsoid with three semi 

principal axes a , b , and c  with max , ,R a b c . Thus, for two ellipsoids with centers 

A and B, if the distance between A and B is larger than 2R, then these two ellipsoids do 

not intersect. Thus all the inclusions that are at a radial distance greater than 2R from the 
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center of the inclusion being added can be excluded from the next intersection check in 

the three-step hierarchy.  

5.2.3.2 Method of separating planes 

The method of the separating planes is based on determining whether two convex objects 

are intersecting with each other by detecting if there is a node on one object that lies on or 

inside the other object given the relative position of the node on one object with respect 

to all the planes on the other object. Consider a plane in the infinite space that has two 

sides: the inner side and the outer side. By using the right-handed rule, it is possible to 

distinguish between the two sides. Let ABC  be the triangle lying on this plane with 

nodal coordinates denoted by , ,a a aA x y z ,
 

, ,b b bB x y z and , ,c c cC x y z . The nodes are 

numbered counterclockwise. Consider an arbitrary node , ,P x y z . We determine its 

location relatively to the triangle ABC  by calculating 

 

1

1

1

1

A A A
B A B A B A

B B B
C A C A C A

C C C
A A A

x y z
x x y y z z

x y z
x x y y z z

x y z
x x y y z zx y z

 (5.2) 

If 0 , then node P is at the outer side of the plane and vice versa; if 0 , then P is 

on the plane or at the inner side of the plane. If a node on a convex object lies inside all 

the surfaces of the other object, then the two convex objects are intersecting. 

5.2.3.3 Method of separating axes 

This section discusses the method of separating axis - the method employed to determine 

whether two stationary convex objects are intersecting or not. It can be proved that, two 

convex stationary objects will not intersect if there exists a line for which the intervals of 

projection of the two objects onto that line do not intersect. This line is termed as a 

separating line or, more commonly, as a separating axis [245].  
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Consider two compact, convex sets 1C and 2C and a line D passing through the 

origin. The projection intervals of these compact, convex sets on to the line D are given 

by  

  

1 1
1 min max 1 1

2 2
2 min max 2 2

, min  :  ,max :

, min  :  ,max :

I D D D X X C D X X C

I D D D X X C D X X C
 (5.3) 

where  is the projection vector on D and the superscripts corresponds to the index of the 

convex set. The two convex sets do not intersect, if D D
1 2

min max  or

D D
21

max min . A 2D example is shown in Figure 5.2 to illustrate the idea of this 

method. 

 

 

Figure 5.2 Intersection check in 2D using method separating axes 

To check for the intersection of convex polyhedra in 3D space the set of direction 

vectors includes the normal vectors to the faces of the convex polyhedra and vectors 

generated by the cross product of two edges, one from each polyhedron. The curved 

fibers are considered to be comprising of s piecewise compact, convex sets. Let jC  with 

1,2j be the convex polyhedra with vertices 
( )

1

Lj
i i
V edges 

( )

1

Mj
i i
E  and faces 

( )

1

Nj
i i
F with outward pointing normal to each face being computed and stored.  
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Alternatively, a separation check for convex polyhedra in 3D space can be performed 

by solving an optimization problem. Two convex polyhedra containing s faces can be 

algebraically defined by a set of solutions to a linear system of equations defined by 

 1 1 1 2 2 2;Ax b A x b   (5.4) 

where 1A  and 2A are real 3s matrices, 1b  and 2b  are real 1s matrices, and 1x  and 2x   

are vectors of the coordinates of the convex polyhedra in 3D space. 

The minimum distance between two inclusions in 3D space can then be determined 

by solving the convex optimization problem  

 3
min 1 2min[ ( , )]Dd d x x   (5.5) 

The minimization solution is computationally less efficient compared to method of 

separating axis. The flowchart for the hierarchical RSA algorithm is shown in Figure 5.3. 

5.2.4 Random inclusion composite in three-dimensional space 

The process of generating a random inclusion composite unit cell in 3D consists of 

placing inclusions of a given shape and size (or size range) and rotation angle (or rotation 

angle range) one by one in randomly selected positions in the unit cell domain. Each time 

a new inclusion is attempted to be placed in the unit cell domain, the overlaps with 

existing inclusions are detected. If a newly introduced inclusion does not overlap with 

others, it is allowed to stay in the RVE; otherwise, another position is attempted. If, after 

a predefined number of trials, the inclusion has not found its place so that it does not 

overlap with existing inclusions, it is discarded and another inclusion is selected and tried 

in the same manner. This process is repeated until a predefined inclusion volume fraction 

is reached. The algorithm can be easily implemented for complex inclusion geometries. 

However, the method is very time consuming and, for non-spherical inclusions, 

rearrangement by way of rotation is often not possible. Moreover, since some inclusions 

may have to be discarded, the size distribution of packed inclusions may be different 

from the intended. The packing density depends on the sequence of inclusion addition. 

For example, if larger inclusions are added first, the final packing density tends to be 



Chapter 5. Automated Unit Cell Generation 

135 

higher than if smaller inclusions are placed first. In the following paragraphs we describe 

the algorithm for unit cells with inclusions in the form of straight chopped fibers 

randomly oriented in 3D space and unit cells with ellipsoidal inclusions. 

 

 

Figure 5.3: Hierarchical RSA algorithm 

5.2.4.1 Unit cell with straight chopped fibers randomly oriented in 3D space 

The microstructure of materials such as phenolic impregnated carbon ablators (PICA) 

consists of chopped fibers randomly dispersed in resin. The volume fraction of fibers is 
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typically very small. The algorithm developed to generate the randomly oriented chopped 

fibers in 2D space can be tailored to generate the unit cell for carbon phenolic 

impregnated carbon ablators (PICA). The inclusions are idealized by straight cylinders, 

with user-defined cross-section and length. Since the inclusions are randomly oriented in 

3D space, the center ( , , )C x y z and the in-plane (0,2 ) and the out-of-plane (0,2 )

angles are randomly generated. The random orientation in 3D space obviates the 

intersection check in 2D space. The aforementioned three-step intersection check process 

is used to check for fiber intersections in 3D space. A newly generated fiber is rejected if 

it fails the intersection check in 3D space. The unit cell with straight chopped fibers 

randomly oriented in 3D space is shown in Figure 5.4. 

 

Figure 5.4 Straight chopped fibers randomly distributed in 3D 

5.2.4.2 Unit cell with randomly oriented bonded chopped fibers free of matrix 

material (FiberForm) 

FiberForm is a low density very porous carbon fiber insulation material designed for high 

temperatures applications. It consists of a group of carbon fibers bonded to each other by 

means of an organic binder that is carbonized at very high temperature as shown in 

Figure 5.5. The FiberForm unit cell is defined parametrically as a function of handful 

parameters, such as fiber characteristics (volume fraction, dimensions, orientations) and 

the dimensional characteristics of binders. The FiberForm unit cell generation process 

consists of two steps. In Step 1, a unit cell with randomly oriented disconnected fibers 
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embedded in matrix material as described in the previous section is generated. In Step 2, 

the binders connecting the fibers are generated as follows. For each fiber, loop over all 

the other fibers and calculate the nearest distances. If the distance between two fibers is 

less than the user-prescribed binder length, a bond in the form of a cylinder is created to 

connect the nearest points on each fiber. After identifying all the bonds, assign matrix 

elements, which lie inside the cylindrical connectors, binder material properties. The 

resulting FiberForm unit cell consists of three phases: fibers, binders and fictitious matrix 

phase, which excludes the binders. There are two possibilities to proceed. Matrix 

elements lying outside the fiber and binder phases can be removed resulting in a two-

phase material consisting of fibers and binders. Alternatively, one can assign negligible 

elastic material properties to the fictitious matrix phase resulting in a three phase 

material. The former is obviously computationally advantageous, while the latter 

provides additional robustness in case some fibers are “not sufficiently connected”, i.e. 

connected at a fewer than two nodes resulting in a mechanism and ultimately singularity 

of the resulting stiffness matrix. In the latter case, the fictitious matrix serves as a 

stabilizer. The FiberForm unit cell is depicted in Figure 5.5. 

  
(a) (b) 

Figure 5.5 (a) FiberForm unit cell with fiber volume fraction 5% and cross section 

radius=2.4; (b) FiberForm unit cell with fiber volume fraction 10% and cross section 

radius=0.6 
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5.2.4.3 Unit cell with ellipsoidal inclusions randomly oriented in 3D space 

The ellipsoids geometry is defined by the coordinates of the center ( , , )C x y z , the semi-

principal axes a, b and c, the in-plane angle (0,2 )  and the out-of-plane angle (0,2 ) . 

The center is generated randomly whereas the major axis a, minor axes b and c, and the 

in-plane angle  and out-of-plane angle  are user defined parameters. One can generate 

these parameters randomly or to specify exact values in order to generate unit cells with 

preferential size and packing angles of the ellipsoids. The ellipsoids are randomly 

oriented in 3D space. The geometry of an ellipsoidal inclusion is shown in Figure 5.6(a).  

As in the case of chopped fibers the ellipsoids are checked for intersection in 3D space 

using the three-step hierarchical approach discussed above. To this effect, an ellipsoid is 

discretized into a convex polyhedron with 48 sub-surfaces, as shown in Figure 5.7. A unit 

cell with randomly sized and oriented ellipsoids is depicted in Figure 5.6(b). 

 

Figure 5.6 (a) Geometry of an ellipsoidal inclusion, (b) an ellipsoidal inclusion unit 

cell 

 

Figure 5.7 Discretization of an ellipsoidal inclusion into 48 faces 

(a) 
(b) 
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The computational times involved in generating a unit cell with ellipsoidal inclusions 

by employing the method of separating axes alone and the three step hierarchical 

approach for is shown in Figure 5.8. It is evident that the three-step intersection checking 

approach significantly reduces computational cost compared to the methods of separating 

axes alone. 

  

(a) (b) 

Figure 5.8 Comparison of CPU times between the (a) 3-step hierarchical method and 

(b) method of separating axes  

5.2.4.4 Unit cell with spherical inclusions in random and semi-random packing 

Sphere packs have been used to model heterogeneous and porous material morphologies 

and to predict thermo-mechanical, permeability, packing density, and dissolution 

characteristics of various materials [246].  A maximum sphere volume fraction of 55% 

can be achieved through random packing algorithm without any intersection between 

spheres. Higher inclusion volume fraction can be achieved through semi-random packing. 

A unit cell with randomly packed spheres is shown in Figure 5.9. Unit cells with semi-

random packed spheres for two predefined ordered patterns are depicted in Figure 5.10 

and Figure 5.11.  
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(a) (b) 

Figure 5.9 Spherical inclusion unit cell using random packing (inclusion volume fraction 

is 52.3%) 

 

 

 
 

(a) (b) 

Figure 5.10 Spherical inclusion unit cell using semi-random packing with pattern-1 

(inclusion volume fraction is 68.4%) 
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(a) (b) 

Figure 5.11 Spherical inclusion unit cell using semi-random packing with pattern-2 

(inclusion volume fraction is 65.6%) 

5.2.4.5 Sphere packs with prescribed particle size distribution  

In addition to particle size, shape and spatial orientations, the particle size distribution is 

another important feature to realistically model the microstructure of heterogeneous 

materials. The inclusion size distribution of a heterogeneous material can be obtained 

from X-ray CT image or laboratory tests. For example, average values of percent passing 

and grain size can be found in the mechanical sieve analysis for different types of sand, 

based on which grain assemblies with predefined particle size distribution can be 

generated by the proposed HRSA. In this section, we show an example of unit cell which 

is generated to represent the microstructure of Nevada sand. Figure 5.12(a) shows the 

unit cell with 5435 particles without particle intersection. The comparison between the 

particle size distributions of the generated virtual sphere packing and laboratory testing 

data is shown in Figure 5.12(b). 
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(a) (b) 

Figure 5.12 (a) Sphere pack of 5435 particles; (b) comparison of particle size 

distributions between virtual sphere pack and laboratory test data for Nevada sand [184] 

5.3 Methodology to control the volume fractions of constituent phases 

in the unit cell 

The volume fractions of the constituent phases in the unit cell are affected by the 

geometry idealization and mesh size. Geometric approximation errors are introduced 

when curved features in the geometry are approximated by planar surfaces. Consequently, 

the resulting volume fractions of the constituent phases may vary from the actual volume 

fractions of phases. The errors introduced by mesh discretization can be reduced by 

refining the mesh, but this will significantly increase the computational cost involved in 

solving the unit cell problem. Alternatively, one can generate a higher volume fraction of 

the constituent phases than required, so that the resultant volume fraction attained is equal 

to the actual volume fraction of the constituent phase [225]. In the present chapter, the 

mesh density parameter is specified as a multiple of the fiber cross-section semi-minor 

axis b. For a mesh seeding size equal to b, the error introduced by mesh discretization has 

been found to be approximately 7%. The volume fraction errors introduced by finer mesh 

densities have been precomputed by numerical experiments. The following empirical 

equation was employed to obtain desired volume fraction 
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 (1 )gen act error
f f fV V V  (5.6) 

where gen
fV is the volume fraction generated, des

fV is the desired volume fraction of the 

inclusion in the random chopped fiber composite and error
fV is the error in the volume 

fraction introduced by mesh discretization. 

5.4 Conclusion 

A parametric model for generating unit cells with randomly distributed inclusions is 

presented in this chapter. The proposed algorithm has the following features: (i) 

robustness by yielding unit cells with inclusion volume fraction of up to 70%, (ii) 

computationally efficiency accomplished through a hierarchy of algorithms with 

increasing computational complexity, and (iii) versatility by generating unit cells with 

different inclusion shapes. The method has been applied to generate various random 

inclusion microstructure composites and granular assembly. 
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Chapter 6  

Conclusions 

The concluding chapter presents the main contributions and some concluding remarks of this dissertation. 

Directions of future research are also included. 

6.1 Main contributions and concluding remarks 

This dissertation explores and introduces new state-of-the-art multiscale modeling 

techniques that incorporate microstructural information to predict macroscopic 

mechanical behaviors for granular materials. We propose numerical methods and models 

to address the challenges associated with granular modeling. The new contribution of this 

research includes the development efficient predictive multiscale methods that (i) link 

coarse- and fine-scale governing equations, (ii) identify material parameters at different 

scales, (iii) alleviating mesh pathological dependency, and (iv) generate compatible unit 

cells with versatile morphological details. The first two chapters (Chapters 2 and 3) are 

the central theme of this work, followed by two supporting chapters (Chapters 4 and 5) 

for detailed demonstration of the proposed methods. 

The author’s main contributions in the field of multiscale modeling of granular 

materials presented in this dissertation are summarized as follows: 

 Nonlocal multiscale DEM-FEM model: a three-dimensional nonlocal multiscale 

discrete-continuum model is presented for modeling the mechanical behavior of 

granular materials. We establish an information-passing coupling between DEM, 

which explicitly replicates granular motion of individual particles, and a finite 
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element continuum model, which captures nonlocal overall response of the 

granular assemblies. The multiscale coupling scheme is able to capture the plastic 

dilatancy and pressure-sensitive frictional responses commonly observed inside 

dilatant shear bands, without employing a macroscopic phenomenological 

plasticity model. The simple shear and the biaxial compression tests are used to 

analyze the onset and evolution of shear bands in granular materials and 

sensitivity to mesh density. The robustness and accuracy of the proposed 

multiscale model are verified in comparisons with single-scale benchmark DEM 

simulations. 

 Multilevel material parameter identification: a new staggered multilevel 

material identification procedure is presented for phenomenological critical state 

plasticity models. The emphasis is placed on cases in which available 

experimental data and constraints are insufficient for calibration. The key idea is 

to create a secondary virtual experimental database from high-fidelity models, 

such as discrete element simulations, then merge both the actual experimental 

data and secondary database as an extended digital database to determine material 

parameters for the phenomenological macroscopic critical state plasticity model. 

The expansion of database provides additional constraints necessary for 

calibration of the phenomenological critical state plasticity models. The 

robustness of the proposed material identification framework is demonstrated in 

the context of the Dafalias-Manzari plasticity model. 

 Regularized phenomenological multiscale damage model: a regularized 

phenomenological multiscale model is developed, where elastic properties are 

computed using direct homogenization and subsequently evolved using a simple 

three-parameter orthotropic continuum damage model. A unified regularization 

scheme is proposed in the context of constitutive law rescaling and staggered 

nonlocal approaches. The method has been validated for three problems: (i) edge-

cracked plate under impulsive loading, (ii) four-point bending of a steel wire 

reinforced cement beam, and (iii) mode I fracture of a two-dimensional triaxially 
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braided carbon fiber composite. For all three test problems we show that: (i) the 

regularized phenomenological multiscale model is capable of reproducing the test 

data with each of the two regularization technique, and (ii) the simulation results 

obtained are practically mesh size independent. In addition, the computational 

cost of the rescaling approach is lower than of the staggered nonlocal approach, 

but the crack propagation path as obtained with the staggered nonlocal approach 

is often smoother. 

 Automated unit cell generation: a parametric model for generating unit cells 

with randomly distributed inclusions. The proposed algorithm possesses the 

following characteristics: (i) robustness by yielding unit cells with inclusion 

volume fraction of up to 78%, (ii) computationally efficiency accomplished 

through a hierarchy of algorithms with increasing computational complexity, and 

(iii) versatility by generating unit cells with different inclusion shapes. A 

statistical study aimed at determining the effective size of the unit cell is 

conducted. The method has been applied to various random inclusion 

microstructure composites including polyurea or polyethene coating consisting of 

hard and soft domains, and fiber framework embedded in an amorphous matrix 

used as heat shield on space crafts. The proposed automated unit cell generation 

algorithm can be potentially used in generating mircrostructures for numerical 

simulation and analysis of composite materials. 

6.2 Future research directions 

Some other interesting studies could be further explored beyond the scope of this 

dissertation. Based on the advancements and progresses of this present work, future 

research can be directed as follows: 

 Multiscale DEM-FEM model considering diffusive tensors: the present 

multiscale DEM-FEM model only deals with single-phase granular materials 

consisting of solid particles, which has limitations in application to solve 

multiphysics problems. In many real problems, the mechanical responses of 
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granular materials are quite likely to couple with other physical processes, such as 

heat transfer, chemical reaction and pore-fluid diffusions. The work presented in 

this dissertation provides a good starting point for new multiscale/multiphysics 

discrete-continuum models that deal with granular materials interacting with 

species in pore space. New models that extend the current spatial homogenization 

techniques to the deformation-diffusion coupled processes may have significant 

impacts for a number of engineering applications. 

 Modeling DEM assembly with grains of arbitrary geometries: in the present 

study, the particles used in the grain assemblies are mostly spherical which cannot 

realistically represent the real granular particles. Though the automated unit cell 

generation technique presented in Chapter 5 is able to generate inclusions with 

different shapes for the representation of composite microstructures, the algorithm 

has yet been applied to generate DEM assemblies. Since the particle shapes affect 

the mechanical behavior of a granular system, it is necessary to realistically model 

the actual particle geometries. Therefore, a possible research direction could be 

realistically modeling grain assemblies with arbitrarily shaped particles using 

NURBS [247] or potential element methods.  

 Robust material parameter calibration approach: the present inversion 

approach used in the multilevel material parameter calibration is a traditional 

gradient-based optimization method. Several issues exist when applying this 

optimization technique to determine the materials parameters: (i) strong 

dependence on the initial guess, (ii) difficulty to distinguish global and local 

minima in the parametric space, (3) convergence problem associated with the 

number of parameters and the availability of test data. To overcome the above 

listed issues, in the future, it will be interesting to exploit new robust algorithms to 

solve such an inverse problem. Statistical optimization such as the Markov chain 

Monte Carlo (MCMC) simulation based on Bayesian inference might be a good 

alternative. In this way, probabilistic distributions of the material parameters 



Chapter 6. Conclusions 

148 

instead of deterministic values could be obtained and be used for robust 

mechanical behavior prediction of the granular materials. 
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