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Abstract This article presents a new test prototype that leverages the 3D printing technique to create ar-7

tificial particle assembles to provide auxiliary evidences that supports the validation procedure. The pro-8

totype test first extracts particle shape features from micro-CT images of a real sand grain and replicates9

the geometrical features of sand grain using a 3D printer. The quantitative measurements of the particle10

shape descriptors reveal that the synthetic particles inherit some attributes such as aspect ratio and sparse-11

ness of the real materials while exhibiting marked differences for sphericity and convexity. While it is not12

sufficient to consider the printed particle assembles a replica of the real sand, the repeatable manufac-13

ture process provides convention tools to generate additional data that supports the validation procedure14

for particulate simulations. Oedometric compression tests are conducted on a specimen composed of the15

printed particles of identical size and shape to create benchmark cases for calibrating and validating dis-16

crete element models. Results from digital image correlation on the synthetic sand assemblies reveal that17

the fracture and fragmentation of the synthetic particles are minor, which in return makes particle position18

tracking possible. As our prototype test and research data are designed to be open-source, the dataset and19

the prototype work will open doors for modelers to design further controlled experiments using synthetic20

granular materials such that the individual influence of each morphological feature of granular assemblies21

(e.g. shape and size distribution, void ratio, fabric orientation) can be individually tested without being22

simultaneously affected by other variables.23

Keywords 3D printing, X-ray CT, discrete DIC, oedometer test, compression, and recompression index,24

open source data for inverse problems25

1 Introduction26

Dry granular materials are conglomerations of particles characterized by energy dissipation due to granu-27

lar interaction and re-arrangement of configurations. In many geotechnical and geomechanics engineering28

applications, the macroscopic responses of the granular materials under confining pressure are of partic-29

ular interest [Schofield and Wroth, 1968, Wood, 1990, Pestana et al., 2002, Henann and Kamrin, 2013, Sun,30

2013]. Hence, a significant amount of theoretical and numerical models have been proposed to predict the31

engineering properties, such a shear strength, compressive strength and, bearing capacity of a representa-32

tive specimen, under different loading conditions. Using internal variables to represent the strain history33

of a material point, the calibration and validation of these models require data from a macroscopic test34

performed on a homogeneous or nearly homogeneous specimen. Nevertheless, the particulate nature and35

grain size distribution of the granular materials often leads to inherent spatial heterogeneities of void ratio,36
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porosity, the angle of friction, specific gravity, which makes the homogeneity assumption invalid and the37

predictions of the macroscopic constitutive model less robust.38

While the recent advancements of micro-mechanical modeling techniques, such as the distinct or dis-39

crete element method (DEM), have offered new ways to more eplicitly incorporate some of these mi-40

crostructural effects in numerical predictions [Cundall and Strack, 1979], the calibration and validation41

of these micro-mechanical models are often limited by the availability of experimental data at the grain42

scale [Ng, 2006, Liu et al., 2016]. As a result, calibration and validation of these micro-mechanical models43

often lead to excessive tuning of material parameters to match the macroscopic stress-strain curves and the44

state path obtained from macroscopic experiments. As demonstrated in Wang et al. [2016], the drawback45

of this approach is that the material parameter identification procedure is often under-constrained. Unlike46

the macroscopic phenomenological models in which strain histories are represented by one to several in-47

ternal variables, a micro-mechanical model often employs much more information in the calibration stage.48

This information can be related to particle morphology (e.g. particle positions, shape, size, packing, fabric49

orientation) and micromechanics material behaviors (surface roughness, fracture energy). In most cases,50

only a subset of this large amount of calibration data is available. An undesirable consequence is that it51

often leads to a very higher flexibility to curve-fit the same macroscopic constitutive responses with differ-52

ent combinations of microstructures and constitutive laws. This arbitrary, which is sometime referred as53

the curse of high dimensionality (cf. Friedman [1997]) has led to calibrated micro-mechanical DEM model54

deprived of true prediction power [Wang et al., 2016].55

The purpose of this paper is to present a simple, practical and reproducible experimental prototype that56

employs 3D printing and micro-CT technique to resolve this under-constraint issue and help assessing the57

quality of DEM simulations in controlled tests. While we acknowledge that replicating the constitutive58

responses of a sand assembly using manufactured particles would be an interesting exercise, this paper59

is not focusing on perfecting the additive manufacture technique to make this important but difficult task60

possible. Such a pursuit would require far more detailed quality control and more advanced manufacture61

technology to ensure that each manufactured particle and the natural counterpart have almost identical62

mechanical properties (e.g., elastic modulii, fracture toughness, frictional coefficient of the surface) and is63

therefore out of the scope of this study. Rather, our focus is provide a simple way to leverage 3D printing64

technique to create artificial scenarios in which the additional (but limited) controls afforded by manipu-65

lating the properties of 3D printing particlers can provide sufficient information to analyze the robustness,66

accuracy and forward prediction capacity of discrete element models. In particular, as the addictive manu-67

facture process provides the users great flexibility in manipulating the grain size distribution, selecting the68

raw materials and changing the particle shapes, one may introduce experiments performed on artificial69

granular assemblies composed of synthetic particles with controllable sizes, shapes and forms.70

This latter point is highly relevant for models used to make forward predictions, as it is quite common71

to attribute the failure of calibration and validation of DEM models on the discrepancy on GSD, miner-72

alogy of grains and grain shapes. However, such a claim is not meaningful if one cannot quantify the73

influences of these morphological characteristics in a sufficiently controlled environments. The 3D print-74

ing techniques therefore provide us a convenient way to create such evidences with multiple granular75

assembles essentially composed of the same set of particles manufactured at different production cycles.76

As a starting point, we present our design of reproducible tests that include 5 simple steps, i.e. (1) ex-77

tracting the geometry of a single particle from micro-CT imaging and reconstruction, (2) converting the78

micro-CT images into finite element mesh and STL (Standard Tessellation Language) file for 3D printing,79

(3) performing quality control and preparation step to create synthetic particles (4) conducting macroscopic80

mechanical tests accompanied with micro-CT imaging and (5) post-processing with discrete digital image81

correlation (DDIC; cf. Ando et al. [2012], Andò et al. [2012], Matuttis et al. [2003]) to track each and in-82

dividual particle movement while measuring the macroscopic stress-strain responses. Upon completion,83

this series of steps will provide not only more experimental data but the right category of data specifically84

targeted for micro-mechanical model calibration and support. More importantly, the data generated from85

the tests are open-source such that they can be used to support blind tests by a third party.86
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2 Background87

Previous works on granular materials over past two decades have explored the relationships between par-88

ticle morphological features and macroscopic constitutive responses [Andrade et al., 2012, Athanassiadis89

et al., 2014, Cho et al., 2004, Favier et al., 1999, Hanaor et al., 2016, Katagiri et al., 2010, Matuttis et al., 2003,90

Nouguier-Lehon et al., 2003, Oda et al., 1982, Kuhn et al., 2015, Liu et al., 2016, 2015, Sun et al., 2011a, Sun,91

2013, Wang et al., 2008, Wang and Sun, 2015, Wang et al., 2016, Wang and Sun, 2016a,b, 2018, Sun and92

Wong, 2018].93

For instance, Shin and Santamarina [2012] study the role of particle shape using mixtures of two differ-94

ent shape grains of sands and reported a significant difference in shear strength under similar experimental95

conditions. Matuttis et al. [2003] numerically investigate particle morphology using spherical and elon-96

gated particle configurations and highlighted its effect on mechanical response with additional emphasis97

on the significance of inter-particle friction.98

Nouguier-Lehon et al. [2003] use 2D DEM simulations to study how morphological features, such as99

angularity, affect the initial specimen anisotropy. Their study indicates that the initial specimen anisotropy100

and the angle of internal friction are all higher for assembles composed of elongated grains than the101

isotropic counterpart. Cho et al. [2004] investigate two experimental databases to explore the effects of102

particle shape on packing density and on the small-to-large strain mechanical properties of sandy soils103

and reported an increase in critical state friction angle (φc) and compressibility under zero-lateral strain104

loading (Cc) with increasing particle irregularity.105

They also indicate some particle-level mechanisms associated with particle irregularity responsible106

for particular macro-scale response, like hindered rotation, slippage, and the ability for particle rearrange-107

ment, lower inter-particle coordination, increased particle level dilation, lower contact stiffness, and higher108

proneness to contact damage. They further highlighted that particle shape emerges as a significant soil in-109

dex property that needs to be properly characterized and documented for a better understanding of gran-110

ular behavior. Pena et al. [2007] study the influences of particle shape on the global mechanical behavior of111

dense granular media using 2D molecular dynamics simulations of periodic shear cells. Their simulation112

results indicate that assemblies composed of elongated grains often form thicker shear band due to their113

tendency to move along preferential orientations with less rotation than the spherical-grain counterpart.114

Oda et al. [1985] also report that the fabric tensor, a representative of the geometrical structure of the force115

chain, aligns to the principal stresses for isotropic grains, but possess different spectral directions of the116

stress tesnors for assembles composed of elongated particles. Athanassiadis et al. [2014] utilize a 3D print-117

ing technique to produce 3D printed particles for triaxial compression experimental tests on specimens118

composed of particles of 14 different shapes reconstructed from statistic information. Their findings reveal119

significant dependence of macroscopic elastic modulus, stress path and plastic behavior on the particle120

shape descriptors, such as the particle sphericity and contact preference parameters.121

On the other hand, the influence of particle shape and size distribution on the macroscopic responses122

have been studied via numerical simulations. For example, Favier et al. [1999] and Katagiri et al. [2010]123

present a DEM model that lumps multiple spherical grains to form aggregates to represent axi-symmetrical,124

smooth-surfaced, non-spherical particles. This approach enables one to re-use most of the standard DEM125

techniques, such as contact detection algorithm for spherical particles and hence the greatly simplify the126

implementation . Andrade et al. [2012] introduce a level-set based discrete element model, which is referred127

as Granular Element method (GEM), that allows discrete elements to take realistic and complex (instead of128

simple geometrical) granular shapes of real geo-materials (e.g. sand grains). Using Non-Uniform Rational129

Basis-Splines (NURBS) technique. Miskin and Jaeger [2013] study the impact of particle shape on mechan-130

ical response through artificially evolved granular materials from different arrangements of lumps made131

of spheres.132

Hanaor et al. [2016] introduce three methods, such as fractal surface overlay (FSO), contour rotation133

interpolation (CRI) and directed polyhedral aggregation (DPA) based on quantitative extraction of some134

input parameters from real grain to numerically reproduce particles having shape features similar to that135

of a real grain. This approach enable the quantitative characterization of grain morphological features rep-136

resented by proper reduced order bases.In addition, they used model grains produced from CRI method137

for 3D printing and studied two types of geometrical shapes namely rough spheres and rough-and-angular138

spheres with tri-axial compression, reporting the considerable difference in response owing to shape pa-139
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rameter. In essence, these three methods have potential to enable investigation mainly emphasizing shape140

parameter by simply changing the corresponding input parameter and observing the subsequent macro-141

scale response of tested specimen. As a result, readers interested at using 3D printing technique to study142

morphological characteristics is referred to Hanaor et al. [2016] in which morphological features obtained143

from experimental data are extracted and simulated grains are reconstructed using fractal surface over-144

lay (FSO), contour rotation interpolation (CRI) or directed polyhedral aggregation (DPA). Another shape145

descriptor approach has also been recently proposed by Ouhbi et al. [2017] in which proper orthogonal146

decomposition (POD) is performed on digitized particles to extract geometrical features or descriptors.147

In this work, our purpose is not analyzing the importance of particle shape effect. Rather, our goal is148

merely to introduce an approach to create artificial assembles composed of particles of controllable shapes149

and sizes to support benchmark and validation produces. As such, we introduce a workflow that utilizes150

micro-CT images to manufactured 3D particles of identical size and shape and subsequently subjected this151

artificial assembles to one-dimensional confinement test. A micro-CT images of a real sand grain (Hostun152

Sand RF, for present studies) is provided to us by the laboratory 3SR, Drs. Edward Ando and Max Miebicke153

to create a benchmark test.154

In the proposed workflow, we first bypass the usage of statistical descriptors and directly compute and155

use the signed-distance function of micro-CT images to create to 3D grains of the identical geometry of a156

real sand grain. Second, our goal here is not using 3D printing to generate realistic granular assemblies.157

Rather, our intention is to conduct control experiment in which we explore how artificial granular assem-158

blies composed of grains of identical particle shape might behave mechanically. As such, we also study159

the limitation of the 3D printing techniques and directly compare the morphological differences between160

the real and artificial grains. Following that, we use digital image correlation to track the displacement161

and rotation of each particle in specimen over the course of mechanical loading. Here, the goal of particle162

tracking is to establish a statistical database of individual particle movement which will serve as a right163

category of data to aid the calibration and validation of DEM models.164

3 Additive manufacture of synthetic particles from microCT images165

In this section, the detailed process of producing synthetic particles from 3D printers has been described.166

First, an image segmentation is performed using nano-tomographic imaging on a single Hostun Sand167

RF sand grain (cf. Flavigny et al. [1990] for physical properties) to extract the geometry (at 1 micrometer168

resolution) of a particle (figure 1a) as a 3D image stack provided by collaborator Edward Ando and Max169

Wiebicke from laboratory 3SR.170

Secondly, the voxel image stacks are converted into a signed-distance function using a semi-implicit171

level set scheme(cf. Sun et al. [2011b,a]). The usage of the signed distance function, as opposed to the172

original binary images, is essential as one may easily adjust the thickness and control the porosity of the173

particles. This signed distance function provides a guideline to generate the point cloud that represents the174

geometry of the surface of the grain. Following this step, a surface mesh is first generated using the CDT175

(Constrained Dalaunay Tetrahedralization) approach (cf. Fang and Boas [2009]) , followed by the creation176

of unstructured volumetric mesh (Figure 1b). Typically, the volumetric mesh generated from this procedure177

might not be printable. For instance, the 3D model may contain gaps in faces or edges, or it may contain178

isolated edges or vertices. In other cases, the point cloud might be too concentrated in a very small region179

in an attempt to capture the details of complex morphological features. In those cases, we use an open180

source software meshlab to repair the model and examine the correction manually. Once this is completed,181

the mesh can be converted into an STL file which is then used as the input file for the 3D printer. It should182

be noted that once the 3D mesh and the STL file are created, the manufacturing process of the 3D synthetic183

particle is reproducible.184

The STL format input file for a 3D printer is reviewed again for printability through the manufacturer’s185

3D printing software to go through a “solidity check”. This check is most critical to perform before moving186

on to actual printing. It highlights the surface of the particle as a color pattern showing delicate parts (as187

red) which are not fit for quality printing (i.e. areas having wall thickness lower than the minimum thresh-188

old of 1 mm). This check gave negative results for desired 10 times up-scaled grains (i.e. max. grain size 3.0189

mm) as shown in Figure 1c presenting many delicate parts in the grain surface. Hence, some modification190
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Fig. 1: Grain printing process (a) 3D view of image stack obtained after x-ray CT and image processing; (b)
tetrahedral mesh output using CDT approach; (c) and (d) solidity check for original and modifyed design
respectively; (red - too thin, yellow - susceptible to break and green – ready for printing).

named as ‘critical areas thickening’ was carried out by the manufacturer. The thickening process altered191

the scale of originally desired grain (i.e. 2.5x3.0x2.4 mm) and a slightly bigger grain with scale 3.1x3.7x3.0192

mm was found fit for quality printing (Figure 1d) within an acceptable uncertainty. The synthetic parti-193

cles were produced using SLS (Selective Laser Sintering) printing method on plastic constituent material194

Fine Polyamide PA 2200 (Tensile modulus=1700+150MPa, sintered material density=0.90-0.95g/cc, man-195

ufacturer =SCULPTEO). Quality printing output was assured with the fine printing layer thickness (60196

micrometers). The raw surface finish was chosen to ensure the consistent surface characteristics for all197

grains which would have been susceptible to the polished surface.198

Fig. 2: 3D printed grains using box printing method approach.

Lastly, it is important to know that 3D printing is a very costly work with around 5-10 USD for a sin-199

gle grain printing. For present studies, we needed around 3000 grains and at this rate, the production200

would have been highly expansive and uneconomical. This issue was dealt with by using ‘boxes printing’201

approach (Figure 2) allowing to print 100 grains together in a box instead of one single particle. This ap-202

proach utilizes the characteristic of SLS printing method where all grains in a box are physically separated203

by easily removable not sintered plastic powder resulting 100 individually separable grains in each box.204

The cost of one box printing was same as that of individual grain printing and thus the production costs205

drastically reduced by 100 times.206
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The raw materials we used to manufacture the synthetic particles is Ployamide 2200, a synthetic poly-207

mer commonly used for 3D printing. The mechanical properties of Ployamide 2200 are determined by the208

manufacturer SCULPTEO, which is available online. In particular, the Young’s modulus of the Ployamide209

2200 is 1250 ± 150 MPa, the shear modulus is 475 ± 25 MPa and the tensile strength is 45 ± 3 MPa. With210

this information, one may calculate the normal and tangential stiffness, kn and kt, via the Hertz’s contact211

theory for modeling the non-adhesive contact in discrete element model (cf. Johnson and Johnson [1987],212

Sun et al. [2013], Kuhn et al. [2015]), i.e.,213

d f n = kndδ ; kn =

√
2G
√

Re

1− ν
δ1/2 (1)

214

d f t = ktds ; ks =

√
2G
√

Re

2− ν
δ1/2 (2)

where d f n and d f t are the incremental change of the normal and tangential forces, dδ and ds are the normal215

and tangential relative displacement, Re is the effective radius of the particles. Nevertheless, one should216

notice that, the actual tangential force could be frictional. Yet, due to the printing process may lead to217

a very rough surface, the frictional properties, abrasion, wear and the visco-elasto-plastic contact effect218

might need further experimental tests. Further experiments on the particle properties, the construction219

of proper inverse problems for material parameter identification at the specimen scale and the validation220

procedure is out of the scope of this study, but will be considered in the follow-up study.221

4 Comparisons of the real and printed grain morphology222

This section presents the quantitative comparisons on features of real and printed grains measured using223

image processing package FIJI, a verison of ImageJ with additional functionality for morphological analysis224

[Schneider et al., 2012]. The 3D image stack for printed grain (Figure 3, right) was obtained using the same225

procedure as that for a real sand grain (at a different resolution = 10 µm though). The 3D image stacks for226

both real and printed grain, presenting their surficial characteristics, were compared based on the shape227

descriptors (see Wadell [1935] for definition) measurement (see table 1). These measurements were carried228

out using image processing tool ImageJ (FIJI) and the accuracy was verified through same measurements229

on perfect sphere reporting unit magnitude for all shape descriptors.230

Fig. 3: Real (left) and printed (right) grain image stack for shape feature measurement.

The difference in sphericity indicates the higher angularity in printed grain in comparison to real grain.231

This observation is also evident from the scale change in printed process as described before. The convexity232

parameter indicates higher surface roughness for printed particles and thus justifies the raw surface finish233

used for printed grains.234
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Shape Descriptors Real Grain Printed Grain

Surface Feature
Sphericity 0.671 0.559
Convexity 1.534 1.980

Fitted ellipsoid paraemters
Elongation 1.446 1.554

Flatness 1.454 1.463
Aspect Ratio 2.102 2.274

Spareness 0.818 0.850

Table 1: Quantitative measurements of particle shape descriptors.

In addition, some shape descriptors were measured based on ellipsoid fitting (Figure 4). These set of235

measurements are indicators of particle geometry. The quantitative comparison indicates the significant236

geometrical differences in printed grains (like more elongation, flatness and aspect ratio) in comparison to237

real grain features. Most importantly, all parameters are dimensionless, thus are independent of particle238

scale and therefore allow better judgment of changes occurred during the printing process.239

Fig. 4: Real (left) and printed (right) grain image stack based on ellipsoid fitting.

Moreover, as mentioned earlier and in previous work, such as Matuttis et al. [2003], the shear strength240

of a particulate materials are significantly influenced by the particle morphology. Therefore, friction angle241

measurements in form of angle of maximum stability and critical state friction angle were carried out using242

methods described by Athanassiadis et al. [2014] and Santamarina and Cho [2001] respectively (see table243

2).244

Friction Angles Real Grain Assembly Printed Grain Assembly
Angle of Maximum Stability 37◦ ± 3◦ 41◦ ± 3◦

Critical state frictional angle 27◦ ± 3◦ 28◦ ± 3◦

Table 2: Estimations of friction angles. The critical state frictional angle is estimated based on the procedure
described in Santamarina and Cho [2001], while the angle of maximum stability is determined following
the procedure in Athanassiadis et al. [2014].

The higher angle of maximum stability φm for printed grains indicates higher surface roughness. More-245

over, the larger particle size (dmax = 3.7mm) of printed grains compared to real one (D50 = 0.3 mm, cf.246

Flavigny et al. [1990]) and higher angularity results more stable granular interlocking and thus results in247

lesser displacement [Athanassiadis et al., 2014]. However, the critical state friction angle φc of the assembly248

estimated via the procedure in Santamarina and Cho [2001] is very close to the reported value of Hostun249
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sand. Due to the differences in grain size distribution, grain mineralogy, surface roughness and the inher-250

ent heterogeneity , this result could be surprising. One possible explanation is that the porosity and particle251

shape might be the most dominated factor that influences the effective friction angle of the grain assem-252

bles. Hence, despite of the differences in particle size and mineralogy, the effective friction angle remains253

close. On the other hand, results of ring shear tests reported in Sadrekarimi and Olson [2011] suggest that254

the critical state friction angle φc is primarily dependent on particle mineralogy and shape (angularity).255

Also, Xu and Sun [2005] based on direct shear box test on sand reported that friction coefficient at critical256

state is only related to surface roughness as no volumetric deformations occur in this stage; and friction co-257

efficient increases with increasing surface roughness. In our studies, a slightly higher φc for printed grains258

can be supported by this hypothesis as printed grains have more surface roughness than real sand grain259

(see table 1, convexity). Moreover, Azeiteiro et al. [2017] report critical state friction angle value of 31.5◦260

for Hostun sand from a drained tri-axial compression test and therefore exists a contradiction from our261

estimated results obtained via the simplified procedure in Santamarina and Cho [2001].262

It is important to note that we performed φc measurement on the real sand specimen having grains263

ranging from sieve 0.315mm (passing) and 0.250mm (retaining), resulting in an almost uniform grain size264

distribution and so as to make the comparative studies with the mono-disperse assembly of printed grains265

more reliable. Therefore, the contradiction between two φc measurements for real sand (31.5◦ from previ-266

ous tests [Azeiteiro et al., 2017] and 27±3◦ measured in present studies) can be explained from the differ-267

ent grain size distribution. In these circumstances, the critical state friction angle measurement for printed268

grain specimen may not be reliable but can be used on trial basis, since the execution of a triaxial test for φc
269

measurement for printed grains is subjected to the ultimate strength of assembly which is out of the scope270

of present studies.271

As a whole, the morphological measurement and comparison satisfy three main purposes. (1) It allows272

convenient and highly reliable quantitative measurement of particle shape parameters directly from im-273

ages (2) It enables to identify and highlight the surficial changes occurred in the printing process and (3)274

this quantitative data has the capability to fine-tune parameters to aid for calibration of DEM models.275

5 Experimental campaign276

As a first attempt, the mechanical response of printed particles was investigated through simple oedometer277

test accompanied by X-Ray CT setup on the dry specimen. The choice of studying specimen under simple278

stress conditions was to explore the limit of compressive strength without any breakage in printed particles.279

A cylindrical specimen 45.00mm in diameter and 15.50 mm in height, comprising of 1,522 similar shaped280

and sized particles were prepared using dry air pluviation [Desrues and Viggiani, 2004] in an oedometer281

test setup developed in laboratory 3SR by previous researchers. Figure 5 presents a layout sketch of the282

experimental setup. Notably, the piston movement was in a positive vertical direction opposite to the283

conventional oedometer test. This was a requirement to conveniently use X-ray CT setup during the course284

of mechanical loading in strain-controlled (at 0.1% per minute speed) quasi-static conditions.285

During the course of mechanical loading, total 18 numbers of X-ray CT scans (at 28µm resolution) were286

made up to 20% strain with two unloading steps from 10 to 7.80% and from 19 to 16% strain (see Figure287

6b). 3D image stacks presenting the position of each particle in the specimen (at different levels of imposed288

strain) were obtained from scanned X-Ray radiographs using reconstruction software developed by RX289

Solutions.290

Figure 6a presents the 3D reconstructed image of the specimen in the initial test condition. The printed291

particles in the specimen can be seen being identical, although there could be some minor discrepancies292

and defects accumulated during the manufacturing process. A vertical slice cut in the middle of the sam-293

ple is presented in Figure 6b for ‘six’ selected strain levels out of 18 scanned specimen states. The piston294

moment from bottom to top can be clearly seen in these vertical slices from the changing blank (white) area295

in bottom part of all 45×15.50mm (not to scale) slices.296

The one-dimensional response shown in Figure 6b resembles those of a typical granular materials in297

which the one-dimensional elastic modulus is higher when the assembly is subjected to higher axial stress.298

In addition, while tracking the particles in the microCT images, we observe that there is no significant299

breakage/cracks in grains even at 20% of vertical strain. This finding may be attributed to the high fracture300



Toward validating and falsifying DEM using synthetic granular materials 9

Fig. 5: Odeometer cell and its components.

Fig. 6: (a) 3D view of reconstructed image stack from initial state of specimen, (b) Vertical stress (kPa) and
axial strain (%) plot for printed particles specimen under oedometric studies inclusive of X-ray CT relevant
information.
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toughness of the printed materials and the high initial porosity. Due to the lack of grain crushing, one may301

assume that the deformation of the printed grain assembles is mainly caused by grain rearrangements and302

porosity reduction. In the following sections, we discuss the behavior of printed particles at macroscopic303

and microscopic levels in greater details.304

6 Analysis of macroscopic responses305

The relation of void ratio vs. the vertical stress of the synthetic grain assembly is shown in Figure 7. A306

visual inspection may indicate that the one-dimensional compression (Ko consolidation) curve of the syn-307

thetic grain assembly qualitatively resembles that of a typical granular materials. In total, there are 18308

scan points at which X-ray microCT images are taken. During the X-ray imaging process, the axial strain309

is kept constant and the stress is monitored. Our result shown in Figure 7 indicates that there is stress310

relaxation and hence the constitutive response of the synthetic grain assembly is rate-dependent. This rate-311

dependence is particularly obvious when the vertical stress is low and during the virgin compression.312

Strictly speaking, granular responses may exhibit rate dependence and that rate dependence may affect313

the measurement of constitutive responses. Our experimental results shown in Figure 6, which is obtained314

at the strain rate of 0.1% per minute, exhibit stress relaxation which is consistent with the observation315

in the triaxial compression test conducted at Andrade et al. [2011]. Nevertheless, we also found that the316

stress relaxation is less significant in our current study than those in Andrade et al. [2011]. This evidence317

may suggest that the measurement of Cc and Ce is taken in a strain rate sufficiently close to maintain the318

quasi-static regime.319

The filtered 1D compression curve shown in Figure 7 is obtained via a nonlinear regression in which320

polynomial was fitted. The algorithm we used is from the curve fitting toolbox ’cftool’ in MATLAB. The321

data in raw experimental response plot was segmented in 5 parts; representing 3 loading and 2 unloading322

regimes. Data in each segment was treated separately for regression and combining them all produced the323

final plotted ‘fitted curve’.324

The compression (Cc) and recompression (Ce) indices of the synthetic grain assembly were inferred and325

shown in Table 3. The published results performed on Hostun sand assemblies in Colliat-Dangus [1986],326

Lancelot et al. [2003] were also included as reference points in Table 3. As the synthetic grain assembly327

is subjected to multiple loading/unloading cycle (see Figure 7), the compression and recompressive in-328

dices are measured multiple times. According to Figure 7, the re-compression index seems to decrease329

each time the material is in the unloading/reloading cycle. This degradation is not significant in the first330

unloading/reloading cycle but becomes more apparent in the second and third one. This indicates that the331

material exhibit a elasto-plastic-damage coupling responses. In other words, if the constitutive response is332

purely elasto-plastic, then should expect that the recompression index for each unloading and reloading333

would remain identical, as indicated in Keller et al. [2011].334

Recall that our examination of the synthetic particles collected after the one-dimensional compression335

test does not reveal significant grain crushing. Hence, the apparent degradation does not seem to come336

from the grain crushing and the resultant pore collapse. Instead, this could be attributed to the fact that the337

synthetic particles made of plastic (PA 2200) is much more deformable than the real sand, as evidenced by338

the low bulk and shear moduli (1250 ± 150 MPa and 475 ± 25 MPa accordingly). This low modulus may339

also be related to the higher ductility exhibited in the synthetic materials and hence explains the lack of340

fracture and grain crushing. Another evidence we observed is from the image analysis where the correla-341

tion error for few grains is higher near the top and bottom interfaces. These errors are often attributed to342

(1) closely related gray values of grain and interface, and (2) small changes in shape of grain. Both these343

possibilities are indicated by search window error in DDIC results [Ando et al., 2012].344

It should be noted that, unlike the real Hostun sand assemblies previously used in Colliat-Dangus345

[1986], Lancelot et al. [2003], the synthetic grain assembles are composed of grains of identical sizes and346

shapes. The fact that the particles are of the same size and shape makes the assembles extremely poorly347

graded. A well-known fact is that those materials often exhibit much lower dry density and hence easier348

to maintain higher void ratio when subjected to the compressive loading. However, this mechanism could349

be offset by the higher deformability of the plastic materials.350
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Fig. 7: Void ratio vs vertical stress of the synthetic grain assembly.

Furthermore, the synthetic sand is made of plastic materials, which exhibits different elasticity and351

critical energy release rate from the real Hostun particle counterpart. Surprisingly, the compression and352

re-compression indices of the synthetic sand are quite close to those of the real material when the vertical353

strain is within 10%, as shown in Table 3. Since the only properties of the synthetic assemblies controlled in354

this experiment is the particle shape and the initial void ratio, this result seems to indicate that the particle355

shape may play an important role on the Ko consolidation process. As such, despite of the discrepancies356

in grain size distribution, particle surface roughness, particle bulk stiffness and the lack of inherent hetero-357

geneity, the synthetic particle is able to replicate qualitatively but not quantitatively some key characteris-358

tics of Ko consolidation of the real sand counterpart. Whether this conclusion could be further generalized359

is not clear, but may warrant further investigations along this direction.360

7 Conclusion361

This article highlights an repeatable and open-source prototype that incorporates 3D printers to gener-362

ate reproducible multiscale data to support the calibration and validation of micromechanical discrete363

mechanics models for granular materials. Since the shape, form, size and mechanical properties of the364

synthetic particles can be altered or controlled in a limited sense, this new degree of control may provide365
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Data Source Data Type Compression Index (Cc) Re-compression Index (Ce)
Virgin Compression 0.123

Present study for Unloading at 10% strain 0.022
printed particles Recompression at 7.8% strain 0.238

Unloading at 19% strain 0.072
Colliat-Dangus [1986] Virgin Compression 0.230
(PhD Thesis) Unloading at 20MPa 0.013
Lancelot et al. [2003] Virgin Compression 0.115
(isotropic compression) Unloading at 1MPa 0.020

Table 3: The compression index Cc and the re-compression index Ce values obtained form the Hostun sand
assembles reported in the literature and those obtained from the synthetic particle assembles.

unprecedented opportunities to calibrate geo-mechanical models or to test, falsify and check hypotheses366

with controlled experiments.367

It should be noted that our goal of this work is not manufacturing synthetic sand assembles as close368

to the real sand counterpart as possible, as those work already reviewed in this paper. Rather, our goal369

is to leverage 3D printing technique to generate supporting evidences such that claims on any invented370

discrete element model can be falsified by controlled tests that are open source, transparent and can be371

easily shared to third party. Furthermore, it should be clarified that a falsified model does not necessarily372

be totally abandoned. In fact, the identification of the limitations of the model might make it more useful373

for the right applications. On the other hand, a model, claim or hypothesis that is not falsifiable cannot be374

tested rigorously, despite of the fact that supportive evidences can be found.375

A Appendix: Analysis of microscopic responses376

To investigate the grain rearrangements and porosity reduction phenomena at the microscopic scale, dis-377

crete DIC (cf. Ando et al. [2012], Hall et al. [2010], Tudisco et al. [2015]) with image interpolation, has been378

performed on reconstructed image stacks of printed particle specimen at different stages of applied strain.379

In the DDIC process, firstly, each particle in the image stack representing the initial state of the specimen380

is labeled and named as reference image stack. The relative position all other particles in image stacks rep-381

resenting different strain levels are then calculated via a particle tracking algorithm called TomoWarp2 (cf.382

Tudisco et al. [2017]) developed in laboratory 3SR. The output results (displacement and rotation in all of383

three axial directions) are recorded in a spreadsheet for all particles in the specimen at different mechanical384

loading stages.385

Figure 8 presents vertical displacement (Z direction) map obtained for 6 different stress states of the386

specimen (as presented in Figure 6b) through a color pattern of the image slice cut through the middle387

of reference image stack (see Figure 6a). The intensity of the color represents the relative movement of a388

particle in a particular stress state to that of in reference image stack. These 6 stress states are representative389

of particle position in a) low strain level (scan 5), b) loading/unloading at small (scan 9 & 10) and higher390

strain levels (scan 15 & 16) and, c) high strain level (scan 18). Notably, since the concept of DDIC presents391

the relative position w.r.t. the reference image; therefore, all image slices in Figure 8 are of reference image392

where different color intensity is representative of vertical displacement at mentioned strain level (via scan393

number).394

At the first glance, this color map shows the significant movement of particles present near moving the395

piston (Bottom layer). The movement is further shifted to middle and then top layer particles in due course396

of mechanical loading. This behavior resembles that of the theory of stress distribution in granular material397

and thus justifies the potential of particle tracking technique as well as of the synthetic material for such398

mechanical investigations. However, DDIC results showed some error as the negative displacement of399

higher magnitude for grains present in top and bottom interfaces. This observation is again due to "search400

window" error for some grains present in the interface [Ando et al., 2012].401

Following a similar guideline, the 3D rotation measurements for the printed particles were made using402

the same strategy of DDIC (cf. Andò et al. [2012]); providing data for each grain’s rotation in all three403
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Fig. 8: Display of particle vertical displacement in form of color pattern in reference image slice.

axes (as a rotation vector) w.r.t. the reference image stack. The norm of these three rotation vectors was404

then calculated to represent 3D rotation. Similar to the Figure 8, the color map for same 6 stress states405

for 3D rotation has been presented in Figure 9. The color intensity of each particle represents 3D rotation406

calculated as "norm" of rotation vector in all three directions.407

The color map does not exhibt any traceable trend for the 3D rotation. However, it can be seen that the408

particles in the bottom layer are rotating more in the low strain levels whereas bottom and middle layer409

particles are participating in rotation significantly in higher strain states. Top layer particles are merely410

leading to any sort of rotation. Further, the particle movement trends presented in Figures 7 & 8 are very411

general and present only the movement pattern with no specific statistical information.412

Therefore, in order to better understand the behavior quantitatively, few representative grains were413

selected from the bottom, middle and top layers of the vertical slice (see Figure 6a for this) and their move-414

ment data over the course of loading is statistically demonstrated. Figure 10 below presents this labeled415

vertical slice showing the chosen grains. Here, grains colored as ‘red’ represent bottom layer, ‘green’ rep-416

resents middle and ‘blue’ represents top layer. The labeled number represents the index of that particular417

grain in the sample.418

Moreover, the quantitative movement information about these grains over the course of loading is419

presented graphically for the same 6 chosen stress states as presented in the previous section. Figure 11a420

below presents the data for vertical displacement for the few out of all marked grains in Figure 10 where421

the color of trend line resembles with that of the layer it represents. Figure 11b presents the data for 3D422

grain rotation respecting the color code as used before.423

Now, it is interesting to see the movement of grains in their respective layers. The vertical displacement424

is highest in magnitude followed by middle and lastly the top layer. This information was also visible on425

the color map shown in Figure 9. However, the plot (See Figure 11a) provides additional information on426

the rate of displacement which follows the same trend of being highest for the bottom layer and lowest for427

the top. Also, the grains in bottom layer show higher heterogeneity in granular movement as presented428

by the wider range of vertical displacement. The middle and top layer grains, on the other hand, displace429

rather more homogeneously.430

In the similar context, the data presented in Figure 11b for 3D grain rotation show a random behavior431

for all grains rotating up to 10 degrees during the course of loading; except one-grain index ‘275’ which432

exceptionally show larger grain rotation. Notably, as all grains show very random behavior for 3D rotation,433

only a few grains are presented in Figure 11b for better readability. The almost constant granular rotation434

can be attributed to parameters like granular packing, coordination numbers, and neighbor count. Also,435
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Fig. 9: 3D rotation (norm) map for printed particles at different loading stages.

Fig. 10: Vertical slice from reference image stack presenting labeled grains from bottom (red), middle
(green) and top (blue) layers for statistical particle tracking.

exceptionally higher values observed for one mentioned grain can be attributed to grain dislocations due436

to heterogeneity in void space. Subsequently, this kind of information holds the potential to aid standard437

DE techniques for contact detection, calculation of force-deformation and particle movement.438

Similarly, the particle movement data for displacement in for X and Y directions has been evaluated439

from DDIC. Since the test performed was oedometric and therefore as such, no significant statistical infor-440

mation can be withdrawn from these measurements. Nevertheless, the data obtained for X and Y displace-441

ments is capable of has the capability to aid the calibration of DEM models and further their statistical442

representation will be significant for tri-axial tests which can be studied in future.443

In addition, Figure 11 presents significant analytical information for vertical displacement whereas the444

trend for 3D rotation was quite random. Hence, we further analyzed the vertical displacement behavior445

choosing a large number of grains (instead of very few to be representative) for reliable and more promising446

observations. Four number of vertical levels (X-Y slices) were chosen from the specimen (as shown in447
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Fig. 11: Statistical representation of few selected grain indices for (a) vertical displacement, (b) 3D rotation
.

Figure 12, left) to evaluate the average vertical displacement of the grains present in these slices over the448

course of mechanical loading.449

Fig. 12: Sketch of specimen presenting the four chosen X-Y slices (left), and a general section view of grain
assembly in these slices (right).

The X-Y plane slice in Figure 12 (right) presents the section of the grains present in those slices in a450

general context. The top and bottom slices (slice 4 and 1) are 1.94mm offset from sample extremes and two451
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middle slices (slice 2 and 3) are 3.88mm offset each from slice 4 and 1 towards the center of the sample. The452

top and bottom offset are chosen to avoid wrong measurements in interfaces because of search window453

[2] error (see section 6 for details). The average vertical displacement was evaluated for the grains present454

in these 4 slices over the full course of mechanical loading (see Figure 6b for details). The average vertical455

displacement map is presented below in Figure 13. It can be clearly seen that the ‘slice 1’ grains displace456

more and at the highest rate in comparison to others. This trend is neatly followed by the other three slices457

with lesser displacement and at a lower rate from ‘slice 2’ to ‘slice 3’ and finally ‘slice 4’. This trend more458

rationally justifies the observations presented in section 7 about the theory of stress distribution in granular459

materials. In addition, the trend is similar to the one presented in Figure 11a with one major difference460

of data set and thus more reliable conclusions can be drawn from Figure 13. This further indicated the461

significance of particle tracking information for statistical analysis of mechanical behavior at the particle462

scale.463

Fig. 13: Average vertical displacement plot over the course of mechanical loading for selected four X-Y
slices.

As a whole, the particle tracking data obtained in this study holds a tremendous amount of information464

to aid DEM modal calibration, fine-tuning of parameters and to positively describe the macroscopic behav-465

ior more rationally and confidently. This potential is also in line with our goal to provide an open-source466

database for researchers to verify and calibrate their DEM or FEM-DEM models.467
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