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Mixing granular materials 
with moisture content

Motivation & Background

Artificial ground freezing

Induced Seismicity due to hydraulic 
fracture, mining, CO2 storage…etc

Tire-soil interaction and 
off-road mobility

Geological disposal of nuclear 
waste



Why Machine Learning?



Multi-scale multi-porosity hydro-mechanical problem
Balance of linear momentum

Balance of fluid mass for macropore (fractured pore space)

Balance of fluid mass for micropore (pore matrix space)

Mass transfer coefficient between macropore and micropore

Flux - pressure gradient anisotropic relations

Effective stress principle

Many Material laws with interconnected relations!
Stress-strain & traction-separation laws

Online Multiscale homogenization 
or Offline data-driven model

or Phenomenological models

Figure from Linder & Raina, 2013

(cf. Borja & Choo, CMAME, 2016)

Wang & Sun, 
CMAME, 2018



Information flow in computational mecahnics solvers 
represented by directed graph

Single-
physics case 

Multi-physics 
case 

• Black arrows represent “definition” or “universal principle”
• Red arrows represent material laws 
• Component-based PDE solver (cf. Sun et al. IJNAMG 2013, Sun, 

IJNME 2015 Salinger et al. IJMCE 2016)

Ghaboussi et al. 1991, 
Lefik & Schrefler 2003, 
Kirchdoerfer & Ortiz 2016

(THIS STUDY)
Wang & Sun, 2018a, 2018b, 2019



Generate configurations of subgraphs 

Extract subgraphs 

In the subgraph, decide whether to use classical 
constitutive law, online subscale simulations  or 
data-driven models for each edge  



Recursive Deep Learning -- using neural network 
to train neural network

Wang & Sun, CMAME 2018



Abstraction of knowledge can be done via graph theory
How to accelerate scientific discovery using machine learning? 

Traction

Displacement 
jump Fabric tensor

Porosity

After 
machine 
learning

Von Mises J2 plasticity
1910s 

Drucker-Prager
1950s 

Critical state soil 
mechanics 1960s 

Sand model with fabric 
tensor 2004 

Discover new mechanisms

Dependence on 
mean effective 
pressure

Dependence on 
void ratio

Dependence on 
fabric tensor

8 | From multiscale modeling to metamodeling of geomechanics problems

Each discovery relates to finding new 
mechanisms from data, which can be 
regarded as adding new nodes and new 
edges in the knowledge graph. 

Computers can execute the scientific 
discovery process by playing a “game” of 
finding the optimal knowledge graph from a 
multi-graph of modeling possibilities through 
trial-and-error and policy learning.



Figures from geometriclearning.com

Consider descriptors of data as the ingredients for theory

9

Discovering/incorporating new ideas and descriptors 
not known/used in classical modeling approach  



Example: Incorporating Non-Euclidean Data for 
Predictive Damage-Plasticity Models 
Microstructural information provides constraints 
that regularize the predictions 

Vlassis, Ma, Sun, under review



Which Machine Learning?



“Seeing that” vs. “seeing as” 
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Canard Digérateur (1741) Duck-rabbit (1892)

Rationale of Predictions: External behaviors vs. internal 
properties 

Input 

output



Scientific machine learning for constitutive modeling process
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Graph-based predictions – designed to 
generate knowledge represented by 
directed graph with the same internal 
properties of human thinkers. 

Black box ANN – designed to 
replicate external behaviors 
without  caring internal properties 
(e.g. thermodynamics…etc) 

Machine Learning focusing on internal properties
Why?
• Machine learning is often being used as a black box and people need to develop trust 

for it. (Geotechnical engineering problems are high-regret & safety-critical)
• Small data (geomechanics experiments) versus Big data (Image Recognition)
• Leveraging domain knowledge and constraints in ML formulations

Traction

Displacement jump
Fabric tensor

Porosity

Coordination 
number



Why game?

Ref: https://deepmind.com/blog/alphago-zero-learning-scratch/

1. Emulating the scientific process of generating material constitutive 
laws as a game

2. Use directed multigraph and directed graph  to represent possible 
theories and models  (Graph representation of knowledge)

3. Use deep reinforcement learning to find optimal way to generate 
knowledge and model that best represented the data among all 
possibility (deep reinforcement learning)



Analogy of Constitutive Modeling to Games
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Chess Game

Move pieces to 
put the opponent's 
king in "checkmate"

Go Game

Place pieces to 
control more territory 
than your opponent

Meta-modeling Game

Connect edges to generate 
optimal internal information 
flow of constitutive models

Traction

Displacement jump Fabric tensor

Porosity

Coordination 
number



Superhuman Performance of AI in learning the strategies of games
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Beginner level
with greedy plays

3 hours

Learnt the fundamentals 
of Go strategies

19 hours

Super-human level
with disciplined plays

70 hours

Alpha Go Zero

https://deepmind.com/blo
g/alphago-zero-learning-
scratch/

Legal game positions: 
2e170 
>  atoms in universe 
1.6e79

10 games

Meta modeling 
DRL
Legal game positions 
depend on the number 
of nodes of internal 
features

In our example: 
over 2e4

30 games 100 games



In a nutshell, ..the process of writing constitutive 
laws/surrogate models as a game AND this 
game can be played by AI or human



Meta-modeling of traction-separation law

• Model the action of a modeler as a game whose goal is to replicate the 
physics as close as possible

• Dee-Q-learning creates AI to play the game and learn from repeating 
generating models automatically  



How to build the modeling game?



Game Environment – Data Generation: 
Computational homogenization of traction-
separation law for strong discontinuity

Hill-Mandel Lemma for bulk volume 

Hill-Mandel Lemma for interface

Sun, Andrade, Rudnicki, IJNME, 2011, Wang & Sun, CMAME 2016, Wang et al. IJMCE 2016,  Wang & Sun, CMAME 2018

Solid skeleton: Darcy’s flow: 



Game Board: Mechanics Knowledge Representation 
in Graphs, Directed Graph and Directed Multigraph
• Vertices  - a measurable physical properties 

(permeability, thermal conductivity, force, 
displacement, strain..etc) 

• Directed Edges – existing hierarchical relationships 
between two vertices (could be  trained neural 
network or mathematical expression

• Edge Labels – the specific models used to connect 
two physical vertices. The model an be 
mathematical, neural network, support vector 
machine …etc

• Label Directed Multi-graph – all the possible way 
the vertices are connected by different 
combination of edges with different labels

• Directed graph – the optimal configuration of the 
vertices connected by edges, each with one unique 
labels, a subset of the directed multi-graph
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Directed Multigraph 

Initial game state 

Directed graph JF Sowa, Conceptual Graphs for a Data Base Interface, IBM J. RES. DEVELOP., 1976 



Game Board Generation: combining best 
moves from experts and ML edges 

Pandolfi et al. [1999]

Tvergaard [1990]

Wang & Sun [2018]
Directed multi-graph that contains all 
actions of three previous modelers 
recorded in Tvergaard, 1990, Pandolfi et 
al, 1990 and Wang & Sun [2018]



Adding new vertex (and physics) via Geometric 
Deep Learning

§ Constitutive law generation 
from non-Euclidean grid 
data

Polycrystal RVE Node-weighted undirected crystal connectivity 
graph

Node weights: crystal orientation, volume, 
number of neighbors, number of faces, etc.

Edge weights: area of contact, angle of 
contact, etc.

Why switch from Euclidean 
to Non-Euclidean space:
§ Data structures crafted 

meaningfully with 
domain expertise / 
interpretable

§ Euclidean grid data (eg. 
images) → ambiguity of 
interpreted features

§ Eliminate grid resolution 
dependency →
computational efficiency

Edges
(grain contacts)

Vertices
(grain) 

Poly-crystal Connectivity Graph for Anisotropic Energy Functional Prediction



Adding new vertex: Graph Data – Weighted 
undirected graph

• Generally superior accuracy for blind prediction AND calibration with graph data

• Most important graph node feature:  crystal orientation (Euler angles)  

Encoded 
feature 
vector 

represent
ation of 
the two 
RVES (9 
features)

Calibration Blind 
predictions



Game Reward: Objective function with 
k-fold cross-validation

o Example Score system: 

• 0.4 weight on accuracy of the predictions 

• 0.4 weight on consistency in replication of 
training data and in forward prediction

• 0.2 weight on model execution time
Figure from wikipedia



Game Rules -- where Mechanics human knowledge is used  
(e.g. material; frame indifference)

ML w/ invariant and so(3)
(cf. Wang & Sun, 2018)

ML w/ tensor components
(cf. Ghaboussi et al, 1998) 

Remedy 2: Get more data with rotated frame ( cf. Lefik & Schrelfer 2003)

Tensor component as input lead to lack of  
objectivity (prediction depends on observer )

Remedy 1: we proposed – use invariants and parametrize rotations, i.e. 
modify the directed graph (RIGHT RIGHT)

Tensor invariant as input lead to lack of  objectivity 
(prediction independent of observer )



Game Rules: Mechanics Principles (e.g. material; frame indifference)

Euler Angle

Property Test

Lie algebra 

where



Game Rules: Mechanics Principles (e.g. material; frame indifference)

FCC Crystal plasticity Example



Game Rules: Mechanics Principles (e.g. material; frame indifference)

FCC Crystal plasticity Example

Component-
based 

training

Lie-algebra 
training



𝑳𝟐 norm Training

𝑯𝟏 norm Training
[Sobolev Training for Neural 
Networks, Google Deep Mind]
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Game Move (Example): Neural network 
models for connecting information flow

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long-short term memory

Multilayer perceptron

Recurrent neural networks

[J Ghaboussi et al. 1991]
[M Lefik and BA Schrefler. 2003]

Treating path-dependent 
behavior is non-trivial

[Zhu JH et al. 1998]

• Capable of 
memorizing 
deformation history

• Gradient vanishes in 
long term memory

This work
• Overcoming gradient 

vanishing or exploding 
issues

• Circumventing over-
fitting with dropout 
layers



Game Playing: Improvement of predictions 
through self-playing

• Self-play reinforcement learning of traction-separation law.

• In each “play”, reward is assessed, then the reward for each action is 
estimated. 

• If we know the true “reward” of each action, we can determine the 
optimal action sequence that yields the best model. 



Game Learning: Improvement of predictions 
through self-playing: Monte Carlo Tree Search



Results?



Training Example 1: Training traction-separation law 
from DEM simulations



Numerical example: self-learned knowledge of cyclic 
traction-separation law

Hand-crafted cohesive laws reviewed in 
[M Ortiz, A Pandolfi, 1999]

Self-reinforcement-learned cohesive laws blind-
validated against cyclic data

Hand-crafted TS law AI-generated knowledge graph TS law



Performance of AI over self-learning 
sessions

1.(a) Violin plots of the density distribution of model scores (b) Mean value and 
± standard deviation of model score in each DRL iteration in each DRL iteration 

Distributions Standard deviations

Mean value
Lowest score 
played



How much data do we need?



Two-agents to play the meta-modeling 
game collaboratively

Data Agent or experimentalist
• Game board: All experiment choices: (uniaxial, biaxial, simple shear, …)
• Game actions: choose the tests to be conducted for model calibrations
• Game goal:

1. Maximize the final model score (global goal, need to be checked by the 
subsequent Model Game)

2. Minimize the total number of tests (local goal) 

Model Agent or modeler (identical to the previous single agent)
• Game board: All modeling choices: (mathematical, ANN, …)
• Game actions: choose the modeling edges to connect the physical quantities
• Game goal:

1. Maximize the final model score



Two-agent game: data collections and meta-
modeling

• Both the modeler and the experimentalist has a common goal of replicating the physics 
as close as possible.

• The experimentalist also has its local goal of minimizing the experiments but needs to 
work collaboratively with the modeler to achieve the common goal.

• Multi-agent Multi-objective Deep-Q-learning creates AI to play the Data and Model 
games and learn from repeating generating models automatically. 

• The game stops when there is no more additional reward for new action. 



Markov decision process for data collection 
and meta-modeling

Model Agent (identical to the previous single agent)

Data Agent

Initial state 𝑠P
Action
𝑎P = 𝑇3 State 𝑠0

Action
𝑎0 = 𝑇5 State 𝑠.

Action
𝑎. = 𝑇8 Final state 𝑠W

Reward 𝑟WReward 𝑟.Reward 𝑟0

Construct
calibration 
data

Global 
Reward

Set of experiments 
[T1]

Set of experiments 
[T1, T3]

Set of experiments 
[T1, T3, T5]

Set of experiments 
[T1, T3, T5, T8]



Self-play reinforcement learning of both 
Data Agent and Model Agent

Data Agent

Model Agent (identical to the previous single agent)

[T1] [T1, T3] [T1, T3, T5, T8]



Numerical Example 2: 
Reverse engineering constitutive laws 

J2

Drucker-Prager
Matsuoka-Nakai

Goal: given a type 
of data and check 
whether the AI can 
generate the right 
constitutive law



Validation exercise 3: Blind predictions

Benchmark1st iteration 5th iteration 8th iteration



How does AI perform compared to human 
players/modelers/experimentalists?



Post-game analysis: Performance in blind 
predictions (soil critical state plasticity)



Numerical Example: Reactivation of dual-porosity fault



Application 1: Reactivation of dual-porosity fault

Sealing
Fault

Injection 
of fluid

100 M𝑃𝑎

Drained

Drained

Drained

60 M𝑃𝑎

Drained

Idealized macroscopic dual-
porosity problem with no build-
in constitutive law

Field applications

Assumed strain embedded strong dis-
contunity problem serves as ”trainer” for 
Macro-Meso ANN that generates macroscopic 
dual porosity responses 

DEM-network model 
are serve as “trainner” 
for Meso-micro ANN 
that generates the 
responses of joints 
and micro-fracture 

Wang & Sun, CMAME, 2018, 2019a, 2019b



Macro-scale simulation with off-
line trained material models

Sealing
Fault Injection 

of fluid

100 M𝑃𝑎 Drained

Drained

60 M𝑃𝑎
Drained

Macro-pore pressure Micro-pore pressure

Deviatoric strain Maximum principal stress

• Constitutive laws of the embedded 
strong discontinuities generated 
from training against RNN- DEM 
data (or meso-scale test data if 
available)  

From multi-scale simulation to multiscale training 
(small strain) – reactivation of sealing fault



From multi-scale simulation to multiscale training 
(small strain) – reactivation of sealing fault

Macro-scale simulation with off-
line trained material models

Wang & Sun, CMAME, 2018



Future work?



Adversarial deep reinforcement Learning
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Example of adversarial learning:
Adversarial framework for effective self-supervised learning on grasp policy in robotics

Pinto, Lerrel, James Davidson, and Abhinav Gupta. "Supervision via 
competition: Robot adversaries for learning tasks." 2017 IEEE 
International Conference on Robotics and Automation (ICRA). IEEE, 
2017.



Experimentalist/Adversary Game Training Iteration 0
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Decision Tree of Experimentalist Agent Decision Tree of Adversarial Agent

Red: Data from DEM simulationsBlue: Prediction from DP model



Experimentalist/Adversary Game Training Iteration 6
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Decision Tree of Experimentalist Agent Decision Tree of Adversarial Agent

Red: Data from DEM simulationsBlue: Prediction from DP model



Final Remarks: Blind Prediction vs. calibration –
overfitting vs. underfitting 



1st IACM Special Interest Conference on Machine Learning
and Digital Twins for Computational Science and
Engineering Conference 2021

Sept 26-29, 2021
Hyatt Regency Mission Bay, San Diego, CA

Conference tracks: Digital Twins / Big Data and Machine Learning / Advanced Manufacture and Design
/ Multiscale Materials and Engineering System / Bio-systems, Medial Device and ML-enhanced diagnostics /
Reduced-order modeling for fluid, solids and structures / Computer graphics, gaming and ML-specific
hardware, Tensor Processing Unit and TensorCore / Geosystem, geostatistics and petroleum engineering/
Education, outreach, short courses, funding opportunity panels and public lectures

Conference co-chairs:
Wing Kam Liu
(Northwestern)
JS Chen (UC San Diego)
George Karniadakis (Brown)
Charbel Farhat (Stanford)
Francisco Chinesta
(ParisTech)
WaiChing Sun (Columbia)



WCCM Paris Short Course on graph-based 
machine learning with open source codes
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