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Why Machine Learning?



Multi-scale multi-porosity hydro-mechanical problem

Balance of linear momentum (cf. Borja & Choo, CMAME, 2016)

vX.p + P08 = co(Pm —om)

I Balance of fluid mass for macropore (fractured pore space)
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Figure from Linder & Raina, 2013 Y . 4
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Balance of fluid mass for micropore (pore matrix space)
o0+ VX-Q,, = co
o0 = J¢(1—¢)ps Q, =JF '-q,
Effective stress principle

Wang & Sun,
CMAME, 2018
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Online Multiscale homogenization Mass transfer coefficient between macropore and micropore

or Offline data-driven model
or Phenomenological models
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Information flow in computational mecahnics solvers

represented by directed graph
Single-

p hyS ICS case Balance of Linear Momemtum Stress »—— Strain »—— Displacement

Ghaboussi et al. 1991,
Lefik & Schrefler 2003, —_—

Kirchdoerfer & Ortiz 2016 ///

m
pmacro

Multi-physics
case
(THIS STUDY)
Wang & Sun, 2018a, 2018b, 2019

Balance of Linear Momemtum

umacro

« Black arrows represent “definition” or “universal principle”

* Red arrows represent material laws

« Component-based PDE solver (cf. Sun et al. UNAMG 2013, Sun,
IUNME 2015 Salinger et al. IIMCE 2016)




Generate configurations of subgraphs
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Recursive Deep Learning -- using neural network
to train neural network

Hierarchical
Material Database

Hybrid mathematical and data-driven
model with RNN components

Bridging scale through
training RNNs
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Abstraction of knowledge can be done via graph theory

How to accelerate scientific discovery using machine learning?
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Discover new mechanisms

Each discovery relates to finding new
mechanisms from data, which can be
regarded as adding new nodes and new
edges in the knowledge graph.

Computers can execute the scientific
discovery process by playing a “game” of
finding the optimal knowledge graph from a
multi-graph of modeling possibilities through
trial-and-error and policy learning.

&5 COLUMBIA | ENGINEERIN

8 | From multiscale modeling to metamodeling of geomechanics problems A



Discovering/incorporating new ideas and descriptors
not known/used in classical modeling approach

Consider descriptors of data as the ingredients for theory

3 " ', . . . \2@ ’g ’
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Domain structure Social network

Figures from geometriclearning.com o



Example: Incorporating Non-Euclidean Data for
Predictive Damage-Plasticity Models

Microstructural information provides constraints
that regularize the predictions

Polycrystal RVE Weight crystal connectivity graph

Vlassis, Ma, Sun, under review



Which Machine Learning?



“Seeing that” vs. “seeing as”

Rationale of Predictions: External behaviors vs. internal
properties

Canard Digérateur (1741) Duck-rabbit (1892)

12 | Meta-modeling of Multi-scale Geomaterials with Deep Learning &5 COLUMBIA | ENGINEERIN
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Scientific machine learning for constitutive modeling process

Machine Learning focusing on internal properties

Why?

* Machine learning is often being used as a black box and people need to develop trust
for it. (Geotechnical engineering problems are high-regret & safety-critical)

* Small data (geomechanics experiments) versus Big data (Image Recognition)

* Leveraging domain knowledge and constraints in ML formulations

Black box ANN — designed to
replicate external behaviors
without caring internal properties
(e.g. thermodynamics...etc)

Traction

Porosity tam >

¢ Coordination
/ \number

5 o)
Displacemen:W

Fabric tensor

Graph-based predictions — designed to
generate knowledge represented by
directed graph with the same internal
properties of human thinkers.

13 | Meta-modeling of Multi-scale Geomaterials with Deep Learning
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Why game?

Emulating the scientific process of generating material constitutive

laws as a game

Use directed multigraph and directed graph to represent possible
theories and models (Graph representation of knowledge)

Use deep reinforcement learning to find optimal way to generate
knowledge and model that best represented the data among all

possibility (deep reinforcement learning)
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ILiime i “’ T ’ il AlphaGo Zero plays like a human beginner, i )- 1= =% so,ﬁ m 2 3‘ -
B0 : forgoing long term strategy to focus on SRR (@I s o o)
greedily capturing as many stones as 4l -é ’-‘—
»‘f\, ~ possible. o
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Ref: https://deepmind.com/blog/alphago-zero-learning-scratch/

70 hours

AlphaGo Zero plays at super-human level.
The game is disciplined and involves
multiple challenges across the board.



Analogy of Constitutive Modeling to Games

Chess Game Go Game Meta-modeling Game
TS Werapn= Traction
A A AR -

Porosity n,m
Coordination
number
A K2 BN 2 Y 2 IR 6_»6”,”1 CNAf
= : o :—TF‘ Y 5 E Displacement jump Fabric tensor
Move pieces to Place pieces to Connect edges to generate
put the opponent's control more territory optimal internal information
king in "checkmate" than your opponent flow of constitutive models

2

&5 COLUMBIA | ENGINEERIN
TN The cience

15 | Meta-modeling of Multi-scale Geomaterials with Deep Learning



Superhuman Performance of Al in learning the strategies of games
3 hours 19 hours 70 hours
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In a nutshell, ..the process of writing constitutive
laws/surrogate models as a game AND this
game can be played by Al or human

Game of chess Game of modeling writing in directed
graph
Definition of game | Make a sequence of decisions to | Make a sequence of decisions to maxi-
maximize the probability to win mize the score of the constitutive model
Game board 8x8 grid Directed graph with predefined nodes of

physical quantities and edges of defini-
tion or universal principles

Game state Configuration of chess pieces on | Configuration of directed graph repre-
the board senting the constitutive model
Game action Move chess pieces Select among modeling choices. For in-
stance

1. What physical quantities are in-
cluded?

2. How physical quantities are linked?

3. What are the edges between physical

quantities?
Game rule Restrictions on chess piece move- | Universal principles
ments
Game reward Win, draw or lose (discontinuous) | Model score (continuous)

Reward evaluation | Only available at the end Only available at the end




Meta-modeling of traction-separation law

B-® © - ‘
’5."6:1.,‘-' 1 Agent /] A-i.:N . n
o e - (the reinforcement o6’ 06 /OR @ +Ug)(5.0)
4 algorithm) ‘ max\‘
»-® ® - ' 8-@-&
State nzl.:ch ln s-% O 1,

(the traction-separation Rewa rd o @

model generated via (Score of the model based on Action
the decision tree) accuracy, speed, consistent _ _
and robustness) (modeling choices, e.g.

selection of state variables,

mathematical expression vs.
neural network, types of neural

network for each edge..etc)

ales

Environment .’

@

(the validation procedure =, /* ’
with constraints )

-6

oo o.001 0007 D003 0004 0005
Environment Idealized multigraph for constitutive models validated against unseen data
Agent Human or Al
State s The generated constitutive laws
Action a The decisions that lead to the generation of constitutive laws
Reward r Score (objective function) of the constitutive model
v(s) Expected model score of state s
Q-value Q(s,a) | Expected model score from taking action « at state s
(s, a) Probability of taking action « at state s

* Model the action of a modeler as a game whose goal is to replicate the
physics as close as possible

* Dee-Q-learning creates Al to play the game and learn from repeating
generating models automatically



How to build the modeling game?



Game Environment — Data Generation:
Computational homogenization of traction-
separation law for strong discontinuity

Hill-Mandel Lemma for bulk volume
Solid skeleton: (¢’) : (¢) = (¢’ : &)  Darcy’sflow: (Vp-q) = (Vp)-(q)

Hill-Mandel Lemma for interface
ho(o” = €) = (Tt) - [u] = (Tn) [t + (Tw) [82]m

Initial State Deformed RVE Flow Network of Deformed RVE

Prescribed deformation

PeriodicBC ¢ Y

Sun, Andrade, Rudnicki, INME, 2011, Wang & Sun, CMAME 2016, Wang et al. JMCE 2016, Wang & Sun, CMAME 2018



Game Board: Mechanics Knowledge Representation
in Graphs, Directed Graph and Directed Multigraph

Ar

» \Vertices - a measurable physical properties p P
sf

(permeability, thermal conductivity, force,

displacement, strain..etc) ) @ @ w w

» Directed Edges - existing hierarchical relationships
between two vertices (could be trained neural
network or mathematical expression

» Edge Labels - the specific models used to connect
two physical vertices. The model an be
mathematical, neural network, support vector
machine ...etc

» Label Directed Multi-graph — all the possible way
the vertices are connected by different
combination of edges with different labels

» Directed graph — the optimal configuration of the
vertices connected by edges, each with one unique
labels, a subset of the directed multi-graph

Directed graph

JF Sowa, Conceptual Graphs for a Data Base Interface, IBM J. RES. DEVELOP., 1976



Game Board Generation: combining best
moves from experts and ML edges

>

B =/ (Bn/62)* + (Dr/61)2, g N Tvergaard [1990]
T(8) = Z o Bi(1 — 25+ 52), s
1 I\
T(Z) Ay 8@ \\
n = —Z (5_"/ // // S . \\\ \\
T(A A G b -
1, = 18),8n )
A o

~—_ Pandolfi et al. [1999]

/

T(3) = k& / —
(A) +c ///

- / \ —
Th = @& A - (& - T(K)/ \\
A o ’ / P \\\ \\\ \
T :T(Z)A& A > A, \—— i —»—\T
3N N /
¢ = gl(1+dat) @ Wang &Sun [2018]
Ty = f5S™(gf, An), d 7 \\ Directed multi-graph that contains all
e . .
LSTM actions of three previous modelers
Ty = g"™(¢/,ar), (80— (80) - () -2 . ,
8 / recorded in Tvergaard, 1990, Pandolfi et
R s al, 1990 and Wang & Sun [2018]

Definition A labeled directed multi-graph is a multi-graph with labeled vertices and edges which can
be mathematically expressed as an 8-tuple G = (Ly,Lg, V,E,s, t,ny,ng) where V and E are the set of
vertices and edges, Ly and LLg are the sets of labels for the vertices and edges,s : E — V,t : [E — V are
the mappings that map the edge to the source and target vetrices,and ny : V — Ly and ng : E — LLg are
the mapping that gives the vertices and edges the corresponding labels in ILy and ILg accordingly.



Adding new vertex (and physics) via Geometric
Deep Learning

Poly-crystal Connectivity Graph for Anisotropic Energy Functional Prediction

Polycrystal RVE

W=W(F,G),:P=

G = (V,E)
/ N\

Vertices
(grain)

Node-weighted undirected crystal connectivity
graph
o oW Node weights: crystal orientation, volume,
oF | number of neighbors, number of faces, etc.

Edge weights: area of contact, angle of
contact, etc.

Edges
(grain contacts)

Constitutive law generation
from non-Euclidean grid
data

Why switch from Euclidean

to Non-Euclidean space:

= Data structures crafted
meaningfully with
domain expertise /
interpretable

» Euclidean grid data (eg.
images) — ambiguity of
interpreted features

= Eliminate grid resolution
dependency —
computational efficiency




Adding new vertex: Graph Data — Weighted
undirected graph

WL Blind
Calibration -
predictions
< >« >
le—-7
w surface estimation — no graph input graph :
= gi: no graph :
]
4
CVE 1 Encoded :
feature :
vector .
represent 3 :
ation of i
the two S :
RVE 2 RVES (9 2 1 !
features) :
0.,24 ]
12 0.08 010 1.100 :
1 i
]
]
1
]
J
0 T ~
0 20 40 60 80
————— Train — Test Split

* Generally superior accuracy for blind prediction AND calibration with graph data

* Most important graph node feature: crystal orientation (Euler angles)



Game Reward: Objective function with
k-fold cross-validation

o Example Score system:
ooooooocooooco

* 0.4 weight on accuracy of the predictions

* 0.4 weight on consistency in replication of Mooooooooo_OOOOO

training data and in forward prediction
m 00000000000000

* 0.2 weight on model execution time [ Aidata

Figure from wikipedia

Instants of constitutive laws are considered as directed graphs. Given a dataset that contains the
time history information of n types of data labeled by I; € Ly and the labeled direct graph defined by
the 8-tuple G = (Ly,Lg, V,E, s, t,ny, ng), and objective function SCORE and constraints to enforce
universal principles. Find an subgraph G’ of G consists of vertices V € V* C V and edges E € E° C E
such that 1) G’ is a directed acyclic graph, 2) a score metric is maximized under a set of m constraints
filly,lp, ..., 1,) =0,i=1,...,mwhere, ie.,

maximize SCORE(ly,ly,...,1,)
! (17)
subjectto  fi(i;)) =0,i=1,...,m




Game Rules -- where Mechanics human knowledge is used
(e.g. material; frame indifference)

85000

95000

90000

85000

ML w/ tensor components

" (cf. Ghaboussi et al, 1998) A N ML w/ invariant and so(3)
& 75000 ' o (cf. Wang & Sun, 2018)
2 70000 ,/“/xrve /éy(
) :
65000 i )
X
60000 70000
55000 ®—@ Result in rotated frame || o—e Result in rotated frame
e—e Target e—e Target
SOOQEOO 0.01 0.02 0.03 0.04 0.05 650q900 0.01 0.02 0.03 0.04 0.05
€33 ac
Tensor component as input lead to lack of Tensor invariant as inplj'? lead to lack of objectivity
objectivity (prediction depends on observer ) (prediction independent of observer )

Remedy 1: we proposed — use invariants and parametrize rotations, i.e.

modify the directed graph (RIGHT RIGHT) o Gk
R(¥Y)= Z
c= Z Z aspm! Y omtP 4 z o aw'? -
A=1B=1 A=1 r}—>-R€SO(3)
orT = Z 57_4171('4) -+ Z Z QAE(TB —_ T,4)7n('48}, R,=R,_ eXP[A‘T,n]
A= 1 A=LB+# A

Remedy 2: Get more data with rotated frame ( cf. Lefik & Schrelfer 2003)



Game Rules: Mechanics Principles (e.g. material; frame indifference)

RNN FFNN o
G clasto-plasticty
{

5@ (DG2)
Q

Euler Angle  ¢p, = \/d(¢1,902)2+d(91,92)2+d(lP1,lP2)2-

Property Test g, — ||I— RR}||r = /2 [3 — tr (RiR])].

Lie algebra ¢ric = ||log(RiR3)| = ||log(Ry) —log(Ry)|| = [|[W1 — W3,

(0 if@=0
®

2sin®

| £ if @ =,

where W =1logR = { (R—RT) if ©@ €0, 77|




Game Rules: Mechanics Principles (e.g. material; frame indifference)

1.0
0.8F
0.6F
€
A
Q . .
® 04l Elastic step | 0.4} Plastic step
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— ROt’ DG2EUI — ROt) DG.ZEUI
0.0 e - - - - . 0.0 = - - - - .
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FCC Crystal plasticity Example



Game Rules: Mechanics Principles (e.g. material; frame indifference)
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Game Rule: Convexity and smoothness of elastic

stored energy

energy potential y prediction

L2 norm Training

°
° o (2
0.5 .
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training points

0.3
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0.00

NN
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Es, d 0.00 &100\.
V. Styg .05 0.15
raip €N

H; norm Training
[Sobolev Training for Neural
Networks, Google Deep Mind]

mean pressure p prediction

dev. stress q prediction
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Game Move (Example): Neural network

models for connecting information tlow

[J Ghaboussi et al. 1991]
[M Lefik and BA Schrefler. 2003]

Treating path-dependent
behavior is non-trivial

[Zhu JH et al. 1998]
« Capable of

Multilayer perceptron

Recurrent neural networks

C?D C?D C? C?D memorizing
[_,_Aj _ A A A J A deformation history
* QGradient vanishes in
Q‘B (19 (:[9 é) long term memory
Long-short term memory This work
6%‘) C?D Ef) « Overcoming gradient
AN AR vanishing or exploding
A EL d b A issues
R « Circumventing over-
é ® é fitting with dropout
The repeating module in an LSTM contains four interacting layers. |aye rs

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Game Playing: Improvement ot predictions
through self—playmg

Initial state s 51 Finalstate s
Action
a, ~ T
& @ 1y - t ay ~imy &- @ @ - 1 ¢ t ‘- - W '
’ . ooy i @ CN - Model score
Self-play ;. @ @& o - & fe . r
P P Action selected according Ar
’ < to policy probabilities Train l
! Monte Carlo Tree Searches ! |
' ) I
v v v
Policy probability Ty T, &~
Value position v vy v, Predict policy/value

Self-play reinforcement learning of traction-separation law.

* In each “play”, reward is assessed, then the reward for each action is
estimated.

e |f we know the true “reward” of each action, we can determine the
optimal action sequence that yields the best model.



Game Learning: Improvement ot predictions
through self-playing: Monte Carlo Tree Search

Repeat
Selection » Expansionand evaluation » Back propagation
»® ® - ' »® ® - ’ »-® ® - ’
n-'c.'m' r.' a:l.'CN' l.' lv(s) 6-".'CN' I.'
A, Ay A,

-9 & ' »-®- & ' W-® « ’ - - & ' -9 B - ’ -9 & '
v v ? v v v v v ? v v v v v !
-8 1, - 8 S 5~ 8- 8 1, 5~ 8, ON o s -89- O e -0y O 5 v(s)
A A & - & - ® & -
P(sw,a’) Q(s'.a/'
Neural network \ .
, , e o 6 - ¢ ®-0-0 - v e o6 - ¢ S0 -
[p(s)),v($)] = fo(s") e e ' e e w v(s™) 9 e o e e w’
A a Ar a

Figure 5: Actual snapshot of Monte Carlo Tree Search (MCTS) in a game of constitutive models (figure design
borrowed from [68]). A sequence of actions are selected from the root state s, each maximizing the upper
confidence bound Q(s,a) + Uqg(s,a). The leaf node sy, is expanded and its policy probabilities and position
value are evaluated from the neural network p(s*) and v(s*) = fo(s"). The action values Q) in the tree are
updated from the evaluation of the leaf node. Finally search probabilities 7 are returned to guide the next action
in self-play



Results?



Training Example 1: Training traction-separation law

from DEM simulations

Reinforcement

earning Iraining 0 25 50 75

Episodes .

- 6m - ¢ L~ - \
Automated on & b e
generated 5L, S CN R - % oN - T
traction- D >

separation laws

Score=0.6295

ML Predictions

against
calibrated data
with noise
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4
% 2 4 6 % 2 i 6 0 3
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Figure 6: Improved calibration and blind prediction scores throughout the training. As time progresses, the Al
learn to write models with increasingly precise predictions. After 75 episodes (i.e. 75 different constitutive laws
are built, both the calibration exercises and blind predictions (blue) are able to yield excellent matches with the

benchmark (red).



Numerical example: self-learned knowledge of cyclic
traction-separation law

Hand-crafted TS law
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=
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‘_
Mode I: Mode II: Mode III:
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Hand-crafted cohesive laws reviewed in
[M Ortiz, A Pandolfi, 1999]

Al-generated knowledge graph TS law
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Model Score

Performance of Al over selt-learning

sSessions
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1.0, 1.0,
0.8/ 0.8
e
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N
)
0.4/ '80.4-
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1.(a) Violin plots of the density distribution of model scores (b) Mean value and
+ standard deviation of model score in each DRL iteration in each DRL iteration



How much data do we need?



Two-agents to play the meta-modeling
game collaboratively

Data Agent or experimentalist
«  Game board: All experiment choices: (uniaxial, biaxial, simple shear, ...)
« Game actions: choose the tests to be conducted for model calibrations
«  Game goal:
1. Maximize the final model score (global goal, need to be checked by the

subsequent Model Game)
2. Minimize the total number of tests (local goal)

UNIAXIAL TRIAXIAL

Model Agent or modeler (identical to the previous single agent)
« Game board: All modeling choices: (mathematical, ANN, ...)
« Game actions: choose the modeling edges to connect the physical quantities

«  Game goal:
1. Maximize the final model score



Two-agent game: data collections and meta-
modeling

Data
Modeler transfer | Experimentalist
Agent Agent

State Action Action State |

| (the constitutive model (writing constitutive (conducting ) )

generatedvia the | laws on directed experiments) Experimental campaign|

decision tree) graph) (e.g. loading path, types

\ of test, cost..etc)
Reward™~_~_ | Environment, Reward
(Score of the model based on o (the validation procedure | /! - o
accuracy, speed, consistent with constraints ) . __| (Improvement of prediction
and robustness) = 5Pt o B R A capability due to additional
1000 0001 0.00 ': ol “l‘l 503 0.004 0.005 - . data )

* Both the modeler and the experimentalist has a common goal of replicating the physics
as close as possible.

* The experimentalist also has its local goal of minimizing the experiments but needs to
work collaboratively with the modeler to achieve the common goal.

« Multi-agent Multi-objective Deep-Q-learning creates Al to play the Data and Model
games and learn from repeating generating models automatically.

« The game stops when there is no more additional reward for new action.



Markov decision process for data collection
and meta-modeling

Data Agent

" Action Action Action
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Set of experiments Set of experiments Set of experiments
[T1] [T1, T3] [T1, T3, T5]
Reward ry Reward r,

Model Agent (identical to the previous single agent)

Initial state s,

State s
[0,1,0,0,0,0,0,0,0,0,0,0.0]

o = 1

Action ay = 1
—

6 by = ON A
Reward ry

Legal moves
[1,01,1,1,1,1,1,1,1,1,1,1]

State s,
[0,1,0,0,0,0,1,0,0,0,0,0,0]
- low =

Action a; = 6
—_—

i @ - CN 4y
Reward ry
Legal moves

[1,0,1,1,1,1,0,1,1,1,1,1,1]

Set of experiments
[T1, T3, T5, T8]

Reward r3

Action a, =7

[0,0,0,0,0,0,0,0,0,0,0,0,0]
Lo =t
¢
Construct o o @
Cahbr atlon Legal moves
data [1,1,1,1,1,1,1,1,1,1,1,1,1]
State s5
[0,1,0,0,0,0,1,1,0,0,0,0,0]
- o = 8
— ¢

™.
& Oy > CN 4,

Reward 73

Legal moves

[1,0,1,1,0,1,0,0,1,1,1,1,1]

Action az = 12
—

State s,
[0,1,0,0,0,0,1,1,0,0,0,0,1]
- fo = 4

4

-
O = Oym— CN 4,

Reward 1

Legal moves
[1,0,1,1,0,1,0,0,1,1,1,1,0]

Action ay = 8
—_

Final state sg
[0,1,0,0,0,0,1,1,1,0,0,0,1]
- Iaw = 4

~
& 8w - CN~= 4,

Reward 1y
from model score

Final state s;

Reward



Self-play reinforcement learning ot both
Data Agent and Model Agent

Data Agent

Initial state s, ) 51 Finalstate s
Action
, az ~ My
417 | Model scor
Self-play [T1] [T1, T3] [T1, T3, T5, T8] 0 ersco e
Action selected according
to policy probabilities vrain 1
! Monte Carlo Tree Searches ! |
N / v v )
Policy probability ) T, e 0 Vi g
Value position v vy v, Predict policy/value LN SR W
G S S
Model Agent (identical to the previous single agent)
Initial state s 51 Finalstate sy
Action . .
a, ~m,
DO -® u"m D® ® -0 e &0 - o
p p S p ‘oim - ® Model score
Self-play ;. @ & e i-® & ,_ o -@ D, - -
a a Action selected according A
o o to policy probabilities - Train 1
! Monte Carlo Tree Searches ! I
I ) I & ‘.';\’
N / v v AN
Policy probability 77, y T, 4 RUPRLP
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Game 2 w/

Matsuoka-Nakai Data
(reverse engineering)
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Numerical Example 2:
Reverse engineering constitutive laws
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Validation exercise 3: Blind predictions
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How does Al perform compared to human
players/modelers/experimentalists?



Post-game analysis: Performance in blind

predictions (soil critical

state plasticity)

Model | Number Mean | Standard | Generalized | Critical | Classical pressure | Others
Class of Models | Score | deviation | Plasticity State dependent elasto- | 'O’
'GP’ 'CS’ plasticity "DP’
1 22 0.603 0.054 v v
2 25 0.565 0.051 v
3 13 0.295 0.028 v v
B 19 0.450 | 0.086 v
5 33 0.163 0.063 v
1.0 16
= Class 1: 'GP' + 'CS'
X —e
= Class 3: '+ 'CS'
08 - Class 4: 'DP"
12 —— Class 5:'0'
o
-
3 0.6 101
2 2
e 2 8
O o
o] o
E 0.4 )
4
0.2
2
0.0 ; ~ ~ | \
0O 2 4 © 10 %0 0.2 0.4 0.6 0.8

DRL Iteration

Score




Numerical Example: Reactivation of dual-porosity fault




Application 1: Reactivation of dual-porosity fault

fault

L pressure
plume

|
|
|
|
|
|

meters

0 150 300

Field applications

DEM-network model
are serve as “trainner”
for Meso-micro ANN
that generates the
responses of joints
and micro-fracture

Drained
100 MPa
. ¥ 7
Drained Drained
= 60 MPa
Sealing
Fault \ .
< Injection
of fluid
oo -~

Drained

Idealized macroscopic dual-
porosity problem with no build-
in constitutive law

Assumed st/rain embedded strong dis-
contunity problem serves as “trainer” for
Macro-Meso ANN that generates macroscopic
dual porosity responses

Wang & Sun, CMAME, 2018, 20193, 2019b



From multi-scale simulation to multiscale training
(small strain) — reactivation of sealing fault

Macro-scale simulation with off-
line trained material models

100 MPq Drained

Drained
60 MPa Macro-pore pressure Micro-pore pressure

max principal stress
—1.566e+08

. Injection
of fluid

=126+8

6e+7

Drained i

-6e+7

* Constitutive laws of the embedded
strong discontinuities generated
from training against RNN- DEM

data (or meso-scale test data if Deviatoric strain Maximum principal stress
available)

—-12e+8




From multi-scale simulation to multiscale training
small strain) — reactivation of sealing fault

Macro-scale simulation with off-
line trained material models

Wang & Sun, CMAME, 2018
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Future work?



Adversarial deep reinforcement Learning

Example of adversarial learning:
Adversarial framework for effective self-supervised learning on grasp policy in robotics

S

Snatching Adversary

Pinto, Lerrel, James Davidson, and Abhinav Gupta. "Supervision via

competition: Robot adversaries for learning tasks." 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,

2017.
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Experimentalist/Adversary Game Training Iteration O

Decision Tree of Experimentalist Agent

Sample: 300kPa

0y — 01 [kPa]

€11

Blue: Prediction from DP model

Decision Tree of Adversarial Agent

Sample: 300kPa
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Red: Data from DEM simulations
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Experimentalist/Adversary Game Training Iteration 6

Decision Tree of Experimentalist Agent

Sample: 300kPa

6001

Blue: Prediction from DP model

Decision Tree of Adversarial Agent

Sample: 300kPa

€11 €11

Red: Data from DEM simulations
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Final Remarks: Blind Prediction vs. calibration —
overfitting vs. underfitting
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