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Abstract. A micropolar discrete-continuum coupling model is proposed to link the collec-
tively particulate mechanical simulations at high-order representative elementary volume to
field-scale boundary value problems. By incorporating high-order kinematics to the homoge-
nization procedure, contact moment and force exerted on grain contacts are homogenized into
a non-symmetric Cauchy stress and higher-order couple stress. These stress measures in re-
turn become the constitutive updates for the macroscopic finite element model for micropolar
continua. Unlike the non-lcoal weighted averaging models in which the intrinsic length scale
must be a prior knowledge to compute the nonlocal damage or strain measures, the proposed
model introduces the physical length scale directly through the higher-order kinematics. As a
result, there is no need to tune or adjust the intrinsic length scale. Furthermore, since consti-
tutive updates are provided directly from micro-structures, there is also no need to calibrate
any high-order material parameters that are difficult to infer from experiments. These salient
features are demonstrated by numerical examples. The classical result from Mindlin is used as
a benchmark to verify the proposed model.
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1 INTRODUCTION

A granular material is a conglomeration of interacting solid particles. Collectively, these par-
ticles may store elastic strain energy while they are bonded or in contact with each other [1, 2],
and dissipate energy due to grain sliding, rotation and fracture or fragmentation. The applica-
tions and handling of granular materials are central to numerous industries, such as geotechnical
engineering, pharmaceutical and food processing. When the particles of the granular assembly
are neither bonded nor subjected to confining pressure, granular flow may occur [3]. On the
other hand, the collective macroscopic responses of these interacting particles may exhibit traits
that are similar to those of a solid continuum [4, 5, 6, 1, 7].

In the past decades, theoretical and computational models designed to model granular ma-
terials in solid-like state have achieved great success. In particular, the critical state theory has
been widely used as a tool to predict granular materials in both dense and loose states. Nev-
ertheless, the prediction of constitutive responses of granular materials after the onset of strain
localization remains a challenging task. One ongoing problems is that numerical methods, such
as finite element or finite volume method requires the usage of macroscopic elasto-plastic con-
stitutive law to approximate nonlinear responses with incremental updates. Without proper the
so-called regularization limiter, the incremental numerical solution may exhibit spurious depen-
dence on the mesh size when material bifurcation described in Rudnicki and Rice [8] occurs.
In additional to introduce rate dependence in the constitutive responses, one possible remedy is
to incorporate higher-order kinematics into the constitutive laws [9, 10, 11]. One example of
the higher-order theory is the Cosserat theory originated by the Cosserat brothers in their trea-
tise. [12]. The Cosserat theory has been re-discovered and studied by researchers that model
granular continua with micropolar kinematics. A micropolar continuum is different than the
classical Cauchy-Boltzmann continuum in the sense that material points are associated with
microstructures that have orientations characterized by micro-rotation [12, 13]. This additional
degree of freedom allows characteristic length or physical length scale to be introduced into the
micropolar constitutive law and hence can be used as a mean to resolve the mesh sensitivity
issue and captured the material size effects [14, 15, 16].

Nevertheless, developing phenomenological constitutive laws for micropolar continua is not
a trivial task. This difficulty is not only due to the increased complexity of the higher-order
constitutive laws, but also the extra burden to identify material parameters corresponding to the
micropolar effect. While it is true that the pathological mesh dependence at the post-bifurcation
regime can be resolved by explicitly modeling the interactions among grains with discrete ele-
ment simulations, such an approach is not feasible for field-scale problem where large amount
of particles are involved.

The purpose of this study is to propose a new multi-scale model that combines the strengths
of the detailed grain-scale discrete simulations and the efficient high-order continuum-based
finite element methods. The offspring discrete-continuum model able to (1) establish informa-
tion exchange paths that prescribe higher order deformation (curvature) on DEM representative
volume elements (RVEs) and extract higher order stress (couple stress) from RVEs, (2) natu-
rally incorporate material length scale (related to particle size) into the multiscale model and
thus improves the performance on capturing the material size effect in poly-disperse granular
materials, (3) provide the physical underpinning from DEM simulations, and (4) resolve the
problems associated with the mesh sensitivity when strain localization occurs.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a
single contraction of adjacent indices of two tensors (e.g. a · b = aibi or c · d = cijdjk ); the
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symbol ‘:’ denotes a double contraction of adjacent indices of tensor of rank two or higher ( e.g.
C : εe = Cijklεekl ); the symbol ‘⊗’ denotes a juxtaposition of two vectors (e.g. a ⊗ b = aibj)
or two symmetric second order tensors (e.g. (α ⊗ β) = αijβkl). As for sign conventions,
we consider the direction of the tensile stress and dilative pressure as positive. We impose a
superscript (·)DEM on a variable to emphasize that such variable is inferred from DEM.

2 THEORETICAL BASIS FOR MICROPOLAR DISCRETE-CONTINUUM MODEL

Previous work on hierarchical DEM-FEM coupling models have been mainly focused on
establishing coupling between discrete element simulations and Cauchy-type-continuum finite
element analysis via first-order homogenization procedure [17, 6, 18, 19]. This first order ho-
mogenization is, nevertheless, only valid if the separation of scales exists [20, 21]. A separation
of scales means that the characteristic length of macroscale problem lmacro, the size of RVEs
lmeso and particle size lmicro fulfills the following inequality, i.e.

lmicro � lmeso � lmacro. (1)

However, there are situations (e.g. presence of defects, inclusions, crack tips, dislocation) in
which the meso-scale characteristic length lmeso is of comparable size of the macroscopic coun-
terpart lmarco. In those cases, it is important to properly reflect the size effect in the homoge-
nization procedure.

Figure 1: Multiscale discrete-micropolar continuum model

This can be done by using a high-order homogenization procedure to incorporate the size ef-
fect. The higher-order discrete-continuum coupling model proposed in this paper requires three
building blocks (as shown in Fig.1): (1) the macroscopic finite element solver that provides in-
cremental kinematic updates to the DEM solver, (2) the second order homogenization scheme
that acts as an interface between the DEM and FEM solvers by converting macroscopic strain
measures into constraints for RVE and up-scaling stress measures from the RVE to the integra-
tion points of the FEM solver and, (3) the DEM solver that calculate the first- and high-order
stress based on the force and moment exerted on the grain contacts. To provide a proof of con-
cepts, we have implemented a 2D micropolar DEM-FEM model for small strain problems. The
following sections provide a brief outline of the the key ingredients of the numerical model, in
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particular the infinitesimal micropolar theroy in 2D [22] and the second order homogenization
theory [23].

2.1 2D small strain micropolar balance principle for macroscopic problems

Here we limit our attention on a prototype model that assumes the strain is infinitesimal
and under plane strain condition. Recall that the kinematics of the micropolar continua can be
defined by two sets of kinematic degrees of freedom that describe the changes of the position
and orientation, e.g. The Cosserat strain γ that takes account of the higher-order kinematics is
defined as a function of both the deformation gradient ui,j and the curvature tensor κ, i.e.,

γij = ui,j − εijkθk
= eij + wij − εijkθk
= eij − εijk(θk − ωk)

(2)

κij = θi,j (3)

where eij = 1
2
(ui,j +uj,i) and wij = 1

2
(ui,j −uj,i) are the components of the infinitesimal strain

and infinitesimal rotation tensors. εijk is the component of the Levi-Civita tensor
3

E. ωk is the
axial vector of the skew-symmetric infinitesimal rotation tensor wij .

Figure 2: Micropolar kinematics. Left: displacement and rotation of a particle. Right: difference between the
orientations of neighbor particles

The stress measures energy-conjugate to the micropolar strain and curvature are Cauchy
stress σ and couple stress µ, respectively. µ takes into the account of the moment induced by
curvature. Note that, in the context of micropolar theory, the Cauchy stress σ no longer holds
symmetry and is sometime referred as the force stress tensor [16]. Neglecting the inertia effect,
the balance principle of linear and angular momentum for the static equilibrium reads,

∂σik
∂xi

+ fk = 0, (4)

∂µik
∂xi

+ εimkσim = 0. (5)

For two-dimensional problem, Eq.(5) can be simplified as,
∂µ13

∂x1
+
∂µ23

∂x2
+ σ12 − σ21 = 0, (6)
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2.2 Micropolar homogenization procedure on DEM unit cells

The procedure that applies macroscopic deformation gradient FM and curvature κM to mi-
croscopic problem is developed by Larsson and Diebels [23]. This scheme is extended to DEM
RVEs based on [17]. Note the position of the center of a particle in reference configuration as
X and in current configuration as x. The mapping betweenX and x reads [23],

x = FM ·X +
1

2
((RM ⊗∇X) ·X) ·X + uf (X), (7)

where uf (X) is the microstructural fluctuation of the particle center. The Hill-Mandel micro-
heterogeneity condition requires that the macroscopic deformation gradient FM is the volume
average of the microscopic deformation gradient F . This imposes two constraints on the DEM
RVE problem: (1) the origin of the local coordinate system is set to the center of gravity of
the grain assembly; (2) uf (X) = 0 for all particles on the boundary. This corresponds to the
uniform displacement boundary condition on DEM RVE.

The deformed RVEs by first-order and second-order homogenization are shown in Fig. 3.
Note that in first-order the deformation is composed of extension/compression and simple shear
modes, while in second-order there are additionally curvature modes.

Figure 3: Deformation of DEM RVE by first-order and second-order theory

Upon deforming the RVE to a new equilibrium configuration, the macroscopic Cauchy stress
is homogenized from DEM:

< σ(x, t) >RVE=
1

VRVE

Nc∑
c

f c ⊗ lc (8)

where f c is the contact force at the grain contact xc and lc is the branch vector that connects
the centroids of two grains forming the contact (xa and xb) [24, 25]. VRVE is the volume of the
RVE and Nc is the total number of particles in the RVE. The homogenized macroscopic couple
stress can be expressed as [26]:

< µ(x, t) >RVE=
1

VRVE

Nc∑
c

(
3

E ·f c⊗(xb⊗(xc−xb)−xa⊗(xc−xa))+mc⊗(xb−xa)) (9)
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The couple stress consists of two contributions: the eccentric contact force f c and the contact
momentmc.

3 NUMERICAL METHODS

The micropolar FEM-DEM model for plane strain problems is formulated in this section.
Firstly, to construct the macroscopic boundary-value problem for micropolar continuum, con-
sider a domain B with its boundary ∂B composed of Dirichlet boundaries (displacement ∂Bu,
micro-rotation ∂Bθ ) and Von Neumann boundaries (surface traction ∂Bt, surface moment ∂Bm
) satisfying {

∂B = ∂Bu ∪ ∂Bt = ∂Bθ ∪ ∂Bm
∅ = ∂Bu ∩ ∂Bt = ∂Bθ ∩ ∂Bm

(10)

The prescribed boundary conditions are
u = u on ∂Bu

n · σ = t on ∂Bt
θ = θ on ∂Bθ

n · µ = m on ∂Bm

(11)

where (·) denotes prescribed values and n is outward unit normal of surface ∂B.
Following the standard procedures of the variational formulation, we obtain the weak form

of the balance of linear momentum and angular momentum

G : Vu × Vη → R

G(u,η) =

∫
B
∇η : σDEM dV−

∫
B
η · ρg dV

−
∫
∂Bt
η · t dΓ = 0 (12)

H : Vθ × Vψ → R

H(θ,ψ) =

∫
B
∇ψ : µDEM dV−

∫
B
ψ ·

3

E : σDEM dV−
∫
B
ψ · ρJ · c dV

−
∫
∂Bm

ψ ·m dΓ = 0 (13)

The displacement and micro-rotation trial spaces for the weak form are defined as

Vu = {u : B → R3|u ∈ [H1(B)]3,u|∂Bu = u} (14)

Vθ = {θ : B → R3|θ ∈ [H1(B)]3,θ|∂Bθ = θ} (15)

and the corresponding admissible spaces of variations are defined as

Vη = {η : B → R3|η ∈ [H1(B)]3,η|∂Bu = 0} (16)
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Vψ = {ψ : B → R3|ψ ∈ [H1(B)]3,ψ|∂Bθ = 0} (17)

where H1 denotes the Sobolev space of degree one.
The spatially discretized equations can be derived following the standard Galerkin procedure.

Shape functions Nu(x) and Nθ(x) are used for approximation of solid motion u and micro-
rotation θ respectively: {

u = NuU , η = Nuη̄

θ = NθΘ, ψ = Nθψ̄
(18)

withU being the nodal displacement vector, Θ being the nodal micro-rotation vector, and η̄, ψ̄
being their variations.

In the DEM-FEM implementation, a Cartesian coordinate system is adopted with axes de-
noted as (x1,x2 x3). In the two-dimensional case, we consider the cross section orthogo-
nal to the x3-axis. A equal-order quadrilateral mixed finite element is used to interpolate
the displacement and micro-rotation fields with the same standard bilinear shape functions:
N = Nu = Nθ. For the two-dimensional problems expressed in Cartesian coordinates, the
nodal generalized displacement vector contains three degree of freedoms, two for displacement
and one for change of orientation, i.e.,

d = [u1 u2 θ3]
T (19)

The generalized strain vector for 2D plane strain problems consists of the micropolar strain γ
and the curvature κ:

E = [γ11 γ22 γ33 γ12 γ21 κ31 κ32]
T (20)

The Cauchy stress σ and the couple stress µ homogenized from DEM RVEs at each integration
point are grouped into the generalized stress vector written as:

SDEM = [σ11 σ22 σ33 σ12 σ21 µ31 µ32]
T (21)

Accordingly, the element shape function matrix N e and the generalized element B matrix Be

can be expressed as,

N e =


N1 0 0 N2 0 0 . . . . . .

0 N1 0 0 N2 0 . . . . . .

0 0 N1 0 0 N2 . . . . . .

 (22)

Be =



∂N1

x1
0 0 . . . . . .

0 ∂N1

x2
0 . . . . . .

0 0 0 . . . . . .

∂N1

x2
0 N1 . . . . . .

0 ∂N1

x1
−N1 . . . . . .

0 0 ∂N1

x1
. . . . . .

0 0 ∂N1

x2
. . . . . .


(23)
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Finally, the finite element equation for balance of linear momentum and angular momentum
in domain B is written in a compact form as:∫

B
BTSDEM dV︸ ︷︷ ︸
F int(d)

=

∫
B
NTF dV +

∫
∂B
NTT dA︸ ︷︷ ︸

F ext

(24)

where T = [t̄1 t̄2 m̄3]
T and F = [ρg1 ρg2 ρ(J · c)3]T are generalized traction and body

force vectors, respectively. The non-linear system of equations is solved by a modified implicit-
explicit scheme which is originally proposed in Hughes et al. [27] and Prevost [28] to solve
single-scale hydro-mechanical transient problems. This solution scheme for DEM-FEM model
allows larger time step size compared to explicit scheme and avoids additional computational
cost in computing the elasto-plastic tangential stiffness from DEM RVEs in fully implicit
scheme. The implicit-explicit predictor-corrector scheme is performed by evaluating a portion
of the left hand side forces explicitly using the predicted solution d̃ defined as:

d̃ = dn (25)

and by treating the remaining portion implicitly with the solution dn+1:

dn+1 = d̃+ ∆dn+1 (26)

The implicit-explicit partition reads,

F int
IMP(dn+1) + F int

EXP(d̃) = F extn+1 (27)

To obtain the incremental update of the macroscopic displacement and micropolar rotation from
the non-linear system of equations, Newton-Raphson method is employed. As a result, the
consistent linearization of the implicit part F IMP is required. The resulting tangential stiffness
matrix depends on what force terms are included in F int

IMP.
Since computation of the homogenizedKs from DEM RVEs produces considerable compu-

tational cost, in the proposed multi-scale solution scheme, we choose to treat the elastic stiffness
Ke implicitly and Kep explicitly. In particular, we assume that the elastic response is linear
and isotropic and use a perturbation method to obtain the all the non-polar and micropolar elas-
tic material parameters from the RVEs at the initial step. The resultant operator-split stiffness
matrices read, KT

implicit =
∂F int

IMP

∂d
= Ke

KT
explicit = −Kep

(28)

4 NUMERICAL EXAMPLES

The micropolar FEM-DEM model is verified against the problem of stress concentration
around a circular hole in a field of uniaxial and uniform tension. Consider a plane stress problem
where a circular hole with radius r is streched by an uniform tensile stress field P . Classical
elasticity theory states that the stress concentration factorKc (ratio between the maximum value
of tensile stress around the hole and P ) is 3. In the realm of microplar theory, however, a
reduction of this factor is predicated. The analytical solutions are studied by Mindlin [29] using
the couple-stress theory, by Kaloni and Ariman [30] and Neuber [31] using the micropolar
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theory, and the solutions are unified by Cowin [32]. These studies conclude that Kc, instead
of having the constant value of 3, depends on geometry and material properties, namely the
Poisson’s ratio ν, the ratio of r to the material characteristic length l and a coupling number N .
The micropolar material parameters are explained in details in [33].

The spatial domain, finite element discretization and boundary conditions of the numerical
problem are illustrated in Fig. 4. Due to the symmetry of the problem domain, only a quarter
of the circular hole is solved. On the two cutting-planes, the normal displacements as well as
the rotations are restricted to zero. The circular hole has the radius of 0.05m while the patch
size is 1m, ensuring a uniform tension field P applied around the hole. A strongly gradated
mesh is used to efficiently capture the stress concentration field around the hole. The DEM
sample attached to all Gauss integration points of the finite elements is also shown. The grains
with radius of 0.05m are arranged in a 5x5 cubic array and a concrete interaction model is used
to allow tensile forces between the particles [34]. The DEM sample is initially stress-free and
remains in elastic region under the uniaxial tension field.

x 

y 

𝑷 = 𝟏𝟎 𝑲𝑷𝒂 

𝒖𝒙 = 𝟎 
𝜽𝒛 = 𝟎  

𝒖𝒚 = 𝟎 
𝜽𝒛 = 𝟎  

Figure 4: Geometry, mesh, boundary conditions and DEM RVE for stress concentration problem

The material parameters in the context of the micropolar elasticity theory and the values
identified from the DEM concrete sample using the perturbation method are recapitulated in
Table 1. Note that the internal length l is 0.718 of the grain radius, which is in accordance with
the Mindlin’s statement that l is about 0.75 of the radius of a sphere when the identical elastic
spheres are arranged in a simple cubic array [29].

The Cauchy stress and couple-stress fields around the circular hole given by the micropolar
FEM-DEM model are presented in Fig.5. The stress concentration factor Kc = max(σxx)/P
is about 2.6, smaller than the value of 3 predicted by the classical continuum theory. The
distributions of couple-stress µxz and µyz are symmetric about the bisectrix line. The existence
of these couple-stresses results in the asymmetry of the Cauchy stress, as illustrated by the field
of difference of shear stresses |σxy − σyx| (Fig. 5(c)).

To illustrate the effect of material length scale l on the stress concentration factor, the grain
radius of the DEM concrete sample is varied (r = 0.1m, 0.05m, 0.01m, 0.005m, 0.001m).
The length scales l are always 0.718 of the corresponding radius and the Poisson’s ratio ν and
the coupling number N remain the same values. The stress concentration factor Kc is plotted
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Micropolar material parameters
(notations in consistent with [33]) Value identified from DEM

Micropolar Young’s modulus Em 4.802× 109 Pa
Poisson’s ratio ν 0.235

Micropolar shear modulus Gm 2.255× 109 Pa
Shear modulus µ∗ 1.916× 109 Pa

Modulus between anti-symmetric parts κ 6.783× 108 Pa
Modulus of curvature γ 1.163× 107 N

Coupling number N (N =
√

κ
2(µ∗+κ)

) 0.362

Internal length scale l (l =
√

γ
2(2µ∗+κ)

) 0.0359m

Table 1: Micropolar elasticity material parameters in the stress concentration problem

(a) (b)

(c)

Figure 5: Stress field around a circular hole under tension.

against the length ratio r/l in Fig. 6. The same variation trend of Kc between the multiscale
solution and the analytical solution is observed. This study provides evidence that our multiscale
model intrinsically incorporates the internal material length scale.

5 CONCLUSIONS

A new higher-order DEM-FEM model for granular materials is established by incorporating
higher-order kinematics and second-order homogenization theory. This work demonstrates the
possibility of using grain-scale simulations as a replacement of phenomenological constitutive
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Figure 6: The stress concentration factor Kc as a function of length ratio r/l. Comparison between multiscale
model solutions and analytical solutions [32]

law for micropolar continua. The resultant scheme retrieves the characteristic length naturally
from the DEM assemblies, without the need to explicitly define one via a nonlocal integral.
Another key upshot of the proposed high-order multiscale scheme is that it does not require
any additional material parameters other than the one required for DEM. These features greatly
simplifies the material identification procedure an allow one to analyze the interplay between
evolution of micro-structural attributes and the macroscopic outcome.
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