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Abstract This paper presents an immersed phase field model designed to predict the fracture-induced
flow due to brittle fracture in vuggy porous media. Due to the multiscale nature of pores in vuggy porous
material, crack growth may connect previously isolated pores which lead to flow conduits. This mecha-
nism has important implications for many applications such as disposal of carbon dioxide and radioactive
materials, hydraulic fracture and mining. To understand the detailed microporomechanics that causes the
fracture-induced flow, we introduce a new phase field fracture framework where the phase field is not only
used as an indicator function for damage of the solid skeleton, but also as an indicator of the pore space.
By coupling the Stokes equation that governs the fluid transport in the voids, cavities and cracks, and the
Darcy’s flow in the deformable porous media, our proposed model enables us to capture the fluid-solid
interaction of the pore fluid and solid constituents during the crack growth. Numerical experiments are
conducted to analyze how presence of cavities affects the accuracy of the predictions based on homoge-
nized effective medium during crack growth.

Keywords Biot-Stokes model, coupled Stokes-Darcy flow, vuggy porous media, immersed phase field,
brittle fracture

1 Introduction

Geomaterials such as carbonate rocks, sandstone or limestone often contain geometrical features such as
cracks, joints, vugs or cavities. When the defects are partially or fully saturated with pore fluid, the geome-
try of the features may affect effective stiffness, permeability, water retention characteristics and drained or
undrained shear strength of the material [Juanes et al., 2006, Sun et al., 2011b, Kang et al., 2016, Suh et al.,
2017, Selvadurai et al., 2017, Wang and Sun, 2017, Sun and Wong, 2018]. Furthermore, brittle fracture in
materials that possess geometrical features may lead to pore fluid in cavities migrate into the flow channels
and cause flow conduits that lead to often undesirable outcomes. Modeling geometrical features in porous
media are thus highly important and at the same time challenging subject for the hydromechanically cou-
pled analysis in geomechanics problems like hydrocarbon resources recovery or development of enhanced
geothermal energy reservoirs [Paterson and Fermigier, 1997, Class et al., 2002, Rutqvist et al., 2007, Grant,
2013, Wagner et al., 2015, Heider and Markert, 2017, Suh and Sun, 2020].

One possible modeling choice is to consider a fictitious effective medium at a scale where represen-
tative elementary volume exists. In this case, the geometrical features of the material are not explicitly
modeled but the influences of the these geometrical features are incorporated in the constitutive relations
by treating defects as a different pore system that interacts with the matrix pores [Choo and Borja, 2015,
Choo et al., 2016, Liu and Abousleiman, 2017, Wang and Sun, 2018]. The upshot of the multi-porosity and
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multi-permeability models is mainly the simple numerical treatment since there is no need for complex
meshing techniques or embedded strong discontinuities, and the computational efficiency compared to
pore-scale models that require extremely large domain in order to reproduce hydromechanical behavior
at large scales [Ghaboussi and Barbosa, 1990, Spaid and Phelan Jr, 1997, Blunt et al., 2002, Tang et al.,
2005, Arson and Pereira, 2013, Pereira and Arson, 2013, Suh and Yun, 2018]. However, the drawback of
this approach is that the homogenized effective medium may not sufficiently represent the microstruc-
tural details. This makes the identification of material parameters more complicated since the effective
permeability of multiple interacting systems are not isotropic and the constitutive law for the fluid mass
exchanges inherently depends on the microstructure.

Another common alternative to model the interaction between the cavities and the crack growth is to
conduct simulations via a fracture network model [Ozkan et al., 2010, Leung and Zimmerman, 2012, Fu
et al., 2013, Hyman et al., 2015]. However, the obvious drawback is that the fracture in those models must
either be straight line (in the two-dimensional case) or a plane (in the three-dimensional case) and hence
the geometrical effect on the porous media can not be captured precisely.

In this research, we introduce a phase field framework that allows us to enable a unified treatment to
simulate the evolving geometry of cracks and the cavities. By introducing the phase field as an unified
representation of the void space that is not suitable to be treated as as an effective medium, we introduce
a framework that enables us to analyze how crack propagation in vuggy porous media may affect the
flow mechanism differently than the porous media with pores well distributed in the host matrix. Our
result indicates that interaction between the propagating cracks of the cavities is important for capturing
the hydromechanical responses of the porous media and that existing effective medium approach which
characterizes the pore space with a single hydraulic model such as cubic law and Kozeny-Carmen model
may not be sufficient to capture the cavity-crack-host-matrix interactions.

As for notations and symbols, bold-faced and blackboard bold-faced letters denote tensors (including
vectors which are rank-one tensors); the symbol "-" denotes a single contraction of adjacent indices of two
tensors (e.g., a - b = a;b; or ¢ - d = c;;djx); the symbol "" denotes a double contraction of adjacent indices
of tensor of rank two or higher (e.g., C : & = Cjj¢x); the symbol ‘®” denotes a juxtaposition of two vectors
(e.g., a ® b = a;b;) or two symmetric second order tensors [e.g., (a® ﬁ),'jkl = w;jPr]. We also define identity
tensors: I = §;; and I = 6;6j;, where §;; is the Kronecker delta. As for sign conventions, unless specified,
the directions of the tensile stress and dilative pressure are considered as positive.

2 The model problem

We consider a fully saturated Biot-Stokes system (Fig. 1) that consists of two regions (intact porous matrix
Bp, and cracks or cavities Bg) separated by the sharp interface I'*, where we assume that the solid phase
in Bp forms a deformable porous matrix while solid particles in Bg are in suspension. In this case, both the
solid and fluid phases coexist in both regions. By considering our material of interest as a multi-phase con-
tinuum, we utilize the effective stress principle for the intact porous matrix where the fluid flow is modeled
with the Darcy’s law, while the motion of solid-fluid mixture is modeled by the Stokes equation [Li et al.,
2018]. Two distinct regions are then coupled by properly imposing three transmissibility conditions at the
interface. The model problem with the sharp interface will be later on extended into a diffuse Biot-Stokes
model by introducing the phase field in Section 3.

2.1 Continuum representation

Although Biot-Stokes system only contains two immiscible solid and fluid phases, for mathematical con-
venience, we idealize the material of interest as a three-phase continuum where each constituent [i.e., solid
(s), pore fluid (fp), and free fluid (fs)] occupies a fraction of volume at the same material point. By let-
ting dV = dV; + dVy denote the representative elementary volume of the material, we define the volume
fractions for the constituents as,

A
9= a={s,f), M
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Fig. 1: Schematic representation of Biot-Stokes system that possesses sharp interface I'*.

where the index s refer to the solid phase and f indicates the fluid phase. Since the sharp interface separates
our system of interest into two regions, the volume fraction of the pore and free fluids can be expressed as:

av av
f— (1— He fo Vs
¢/ = (1= Hr) ==+ Hr — %, )
~— ~————
;:¢fD ;:¢f$
where Hp+ is the Heaviside function that satisfies,
0 in Bp,
Hp+ = 3
r {1 in Bs. ®)

In addition, by letting ps and p; denote the intrinsic mass densities of solid and fluid, respectively, the
partial mass densities for each constituent (0%, where & = s, fp, fs) are given by,

p° = ¢%0s 5 o0 = @Ppg 5 05 = 9Fps ;0= 07+ 0T 05, @

where p is the mass density of the entire system. In this study, we assume that both the solid and fluid
phases are incompressible, so that intrinsic mass densities ps and pf are considered as constants.

2.2 Governing equations

This section briefly reviews the balance principles, constitutive laws in the bulk volume of a porous medium
(Section 2.2.1), the region where solid-fluid mixture flows freely (Section 2.2.2), and the sharp interface be-
tween two regions (Section 2.2.3).

2.2.1 Conservation laws for an intact porous matrix

For the region where the solid forms an intact porous matrix, we adopt the effective stress principle [Lade
and De Boer, 1997, Borja, 2006] so that the external loading imposed on the matrix is assumed to be carried
by both the solid skeleton and the pore fluid. In this case, the region Bp is governed by the following
system of equations [Borja and Alarcén, 1995, White and Borja, 2008, Sun et al., 2013]:

V-(¢" - Bps,I) +pg = 0 in Bp, (5)

=0 in Bp, (6)

1.
V'US-FV'WfD-FMP

where ¢ is the effective stress, B = 1 — K/K; is the Biot’s coefficient, M is the Biot’s modulus, p o is the
pore pressure, g is the gravitational acceleration, v, is the intrinsic velocity of constituent a, and wy, =

¢/ (v f — Us) is the Eulerian relative flow vector of the pore fluid (i.e., Darcy’s velocity). Here, we assume
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that B ~ 1and 1/M = 0 to simplify the formulation. Note that the Biot’s coefficient of many sandstone
and shale specimens are often less than one, whereas it is more reasonable to assume Biot’s coefficient
equal to 1 for granite (e.g. Westerly granite) [Berryman and Wang, 1995, Zimmerman, 2000, Jaeger et al.,
2009]. In either cases, the damage of the solid skeleton may reduce the elastic bulk modulus of the solid
skeleton. Therefore both the Biot’s coefficient and modulus may evolve according to the solid deformation.
This nonlinear effect is not considered in this study but will be considered in the future. We also assume
that the behavior of intact matrix in Bp is linear and isotropic elastic and hence only two independent
elastic modulii are needed to capture the elastic response. The constitutive relation for the solid skeleton
can therefore be written as follows:

oy = Ar(e)I + 2ue in Bp, 7)

where o7 indicates the effective stress of the undamaged matrix. The actual and undamaged effective
stress are related by a degradation function, which will later be discussed in Section 3.2. Furthermore,
e = (Vus+ Vul)/2 is the infinitesimal solid strain tensor that depends on the solid displacement u;,
and parameters A and y are the Lamé constants. For the constitutive equation that describes laminar pore
fluid flow in Bp, we use the generalized Darcy’s law that linearly relates the relative velocity w, and pore
pressure gradient V py,, i.e,

w0y = (¥ pgp —ps8) in Bo, ®
where i is the dynamic viscosity of the pure fluid phase, and k is the effective permeability of the porous
matrix. Additionally, in order to incorporate the effect of deformation of the matrix on the porous medium
flow [Mauran et al., 2001, Schutjens et al., 2004], this study adopts the Kozeny-Carman equation to empir-
ically capture the porosity-permeability relation [Chapuis and Aubertin, 2003, Costa, 2006, Wang and Sun,
2017]. Note that the Kozeny-Carmen equation is often considered a rough approximation of the porosity-
permeability relation. A more precise predictions of permeability may requires new geometrical attributes
such as tortuosity [Sun et al., 2011b,a], formation factor [Worthington, 1993, Sun and Wong, 2018], and
percolation threshold [Mavko and Nur, 1997]. This extension is out of the scope of this study but will be
considered in future work.
Recall Section 2.1 that ¢° + ¢/ = 1 in Bp. Then, by letting ¢ := ¢/P the porosity of the matrix, the
Kozeny-Carman equation reads,

_ o[ =go)? ¢’ in
kk{ " H(l—cp)z} oo ©

where ko and ¢y denote the reference permeability and porosity, respectively.

2.2.2 Conservation laws for solid-fluid mixture

This study attempts to model suspension flow in Bs, where mass and linear momentum balances for both
solid and fluid phases should be satisfied. We therefore write the governing balance equations for B;s as,

V-ofs +pfsg =0 in Bg, (10)
V-0°+p°¢ =0in Bg, (11)
V-vs—i—V-wfs =0 il"lB_g, (12)

where o* is the Cauchy stress tensor of & constituent, and the relative flow vector of the free fluid can be
defined as wy, = ofs (v fs — Us). By assuming that the free fluid resides in Bs with low Reynolds number
(i.e., Re < 1), we adopt a simplified version of the Navier-Stokes model, i.e., the Stokes equation. The
Stokes model for the steady-state motion of an incompressible fluid yields the following relationship for
the free fluid stress tensor ¢/s as,

ofs = —pr I+ pesi(Vog, + Vv}s) in Bg, (13)
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where py, is the free fluid pressure and i is the effective viscosity of the solid-fluid mixture [Mooney,
1951, Cheng and Law, 2003], i.e.,

2.5¢
- e Y 14
Heft MfeXp(l—c/cmax) in Bg (14)
where ¢ := 1 — ¢f $ indicates the solid particle concentration, and cmax denotes its upper bound. Again,

notice that we introduce only one solid constituent for the entire system since it is convenient for us to later
on impose interface conditions and further adopt the phase field fracture model that simulates evolving
interface. This approach may not be suitable for modeling complete suspension flow where vs = vy,.
However, we assume that solid particles in Bg follows the same constitutive relations as the free fluid in
order to replicate the suspension flow as close as possible, i.e.,

o’ = —pfSI—&—‘ueff(Vvs—f—VvsT) in Bs. (15)

2.2.3 Conservation laws for the sharp interface between intact matrix and solid-fluid mixture

In order to properly model the interaction between the porous matrix (Bp) and the vugs or cavities (Bg),
complete mass conservation and force equilibrium for the entire system should be satisfied. Since we have
two different constituents for the same type of fluid (fp and fs) while considering only one solid con-
stituent (s), coupling two subsystems thus requires the enforcement of fluid transmissibility conditions at
the sharp interface I'* that models the coupled Stokes-Darcy flow [Arbogast and Lehr, 2006, Arbogast and
Brunson, 2007, Badia et al., 2009, Wu and Mirbod, 2018, Bergkamp et al., 2020].

The first interface condition is the fluid continuity that ensures the mass conservation. Since we assume
that the fluid phase is incompressible, the interfacial fluid fuxes for each subsystem (.M;ZD and M}S) can

be expressed as follows:

M;D:/r*wamB dr ; M;‘csz/r*wfs-nz dar, (16)
~—_—— ~—
= ::m;S

where n}, and n¢ denote the outward-oriented normal vectors from Bp and B, respectively. From Eq. (16),
mass continuity (M}D + /\/ljjs = m;}D + m}s = 0) yields the following transmissibility condition:

wy, np +wp ng = (wy, —wp)-n* =0onT", 17)

where we take n* = ng = —nj, for notational convenience (Fig. 1). Here, Eq. (16) implies that the normal
component of the fluid velocities (w ¢, and wy, ) should be identical in order to guarantee that the exchange
of fluid mass between Bg and Bp is conservative.

The second condition is the force equilibrium at the interface I'*. From each subsystem, total forces
acting on the interface (F }D and F g) may be written as,

Fip= [ ppn’ U Fp = [ oo ar, (18)
o - ::t}
T fp $

where t;;D and t}s indicate the tractions at the interface. The force equilibrium requires .’F;D + .7:;?5 =
t;‘cD + t}s = 0, implying that the normal and shear components should be balanced at the same time. By
decomposing the traction vectors as,

£ = () Y (6 )m i = {fo, fs), (19)
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where m] and m; are the interfacial tangent vectors, we get two more transmissibility conditions that
describe normal and shear force equilibrium, respectively:

t}s n* +pg, =0onT", (20)

* * 149 * *
ty -m; +,uf%(wfs —wg,) -m; =0 onI". (21)

Eq. (21) is the Beavers-Joseph-Saffman condition [Beavers and Joseph, 1967, Saffman, 1971, Layton et al.,
2002, Arbogast and Brunson, 2007]. This idealized condition relates the slip velocity and the shear stress
through the dimensionless slippage coefficient asp, which depends on the microstructural attributes of
the interfaces, such as surface roughness, irregular patterns, as well as the flow velocity [Beavers and
Joseph, 1967, Terzis et al., 2019, Guo et al., 2020]. The validity and limitations of the Beavers-Joseph-Saffman
condition are documented in a number of literature such as Auriault [2010], Mikelic and Jager [2000],
Monchiet et al. [2019] and will not repeated here. Possible extensions of the interface conditions to turbulent
and multiphase flows are an active research area that is clearly out of the scope of this study but will be
considered in the future.

3 The phase field Biot-Stokes model with evolving fractures

This section introduces the mathematical model that uses smooth implicit function, i.e., the phase field, to
approximate evolving sharp interfaces due to damage. We first review the general procedure that employs
an implicit function to approximate sharp interfaces (Section 3.1) shown in Fig. 2. Since the phase field
is a smooth representation of the Heaviside function, we derive the corresponding mathematical model
that approximates interfacial transmissibility conditions suitable for the diffuse representation of the inter-
face. To capture crack growth according to the Griffith’s theory, we adopt the classical variational fracture
model to allow crack growth represented by the evolution of the phase field defined over the spatial do-
main (Section 3.2). These techniques are then applied into the derivation shown in Section 3.3 in which
a mathematical model to capture the hydromechanical coupling of pore fluid flows in both the host ma-
trix and evolving interfaces in brittle porous media. The resultant model does not require locally defined
enrichment function or remeshing and can be implemented in a standard finite element or finite elemen-
t/volume solver.

Fig. 2: Diffuse representation of the interface where exemplary 1D domain consists of Bg in x/L € [0.4,0.6]
sandwiched between undamaged porous matrix Bp.
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3.1 Diffuse interface approximation

This study employs a diffuse approximation for the sharp interface I'* by introducing a phase field variable
d € [0,1] which varies smoothly from 0 in Bp to 1 in Bg. Specifically, we approximate the interfacial area
Ar+ as Ars, which can be expressed in terms of volume integration of surface density functional I'; (d,vd)

over B = Bp U Bg [Miehe et al., 2010, Borden et al., 2012, Suh and Sun, 2019, Suh et al., 2020]:
Ar- ~ A, = / T(d,V d)dv. 22)
JB

Here, the size of diffusive zone [i.e., transition zone where d € (0,1)] is controlled by the regularization
length scale parameter [* such that Ary I'-converge to Ar- [Mumford and Shah, 1989], i.e.,

Ar+ = lim Arx. 23
re = lim Ar, (23)

Based on this approach, phase field d and its gradient V d can be regarded as smooth approximations
of the Heaviside function Hr+ and the Dirac delta function Jr+, respectively [Stoter et al., 2017, Suh and
Sun, 2020]. Therefore, the volume integrals of an arbitrary function G over Bp and Bs can respectively be
approximated as,

/ Gdv = / (1= Hp)dv = lim | G(1-d) dv~/ G(1—d)dv, (24)
Bp *—0.JB B

/ GdV:/ GHy dV = lim/ Cdde/ Gddv. (25)
Bs B 1*-0.JB B

Similarly, the surface integral of the function G along the sharp interface I'* can be approximated as,
/ GdF:/ Gop- dV = lim/ G||VdeVz/G~||Vd|| av, (26)
* I+ =08 B

and we also approximate the normal vector n* as,

. vd

3.2 Crack growth approximated by evolving phase field

For completeness, this section reviews the phase field model for brittle fracture. We consider the following
surface density functional, which is widely used in modeling brittle or quasi-brittle fracture [Bourdin et al.,
2008, Miehe et al., 2010, Borden et al., 2012, Bryant and Sun, 2018, Suh et al., 2020] that possesses quadratic
local dissipation function:

a2

o T 5 (Vd-Va). (28)
At this point, we highlight that the evolution of the phase field (i.e., propagation of cavities or cracks) is
a mechanical process driven by the effective stress ¢’. In other words, we assume that the solid skeleton
is completely damaged in the liquefied zone Bgs, whereas in Bp, the solid skeleton remains undamaged.
We thus omit the terms that are unrelated to the deformation and fracture in this section. Having critical
energy G, that is required to create new free surfaces, potential energy density ¢ reads,

¥ = g(d)pS (e) + ¢, (&) +GT3(d, V d), (29)
Poul (&)

I(d,Vd) =

where ¥y, (g, d) is the degrading elastic bulk energy and g(d) = (1 — d)? is the degradation function
that induces energy dissipation. Following Amor et al. [2009], we adopt additive decomposition scheme
that splits the elastic energy ¥, into compressive (¢, ), and tensile and deviatoric (") modes, where we
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only degrade 1, in order to avoid crack propagation under compression [Na and Sun, 2018, Bilgen and
Weinberg, 2019, Heider and Sun, 2020], i.e.,

1 2
= EK <sV°1>+ + p(edey : gdev), (30)
- _ 1 vol 2
g = 5K <s >7, (31)

where K = A + 21/3 is the bulk modulus of the porous matrix, and (), = (e £ | e |)/2 is the Macaulay
bracket operator. In this case, the effective stress tensor ¢’ can also be decomposed as follows:

o' =g(d)og" + oy, 32)

where Ugi = 9T /de is the fictitious undamaged effective stress, in which we previously assumed ¢, to
be linear elastic [Eq. (7)].

Based on the fundamental lemma of calculus of variations, the damage evolution equation can be ob-
tained by seeking the stationary point where the functional derivative of Eq. (29) with respect to d vanishes,
ie.,

P 9w
@fvawro, (33)
where:
al]J 7 + gC . al/’ _ *v72

Here, the superposed prime denotes derivative with respect to d and V?(e) = V-V (e) is the Laplacian
operator. Furthermore, by following the treatment used in Miehe et al. [2010], we introduce a history func-
tion # which is the pseudo-temporal maximum of the positive energy density (¥;) in order to ensure
crack irreversibility constraint:

— + 35
H 52{3?] P, (35)

By replacing ¢, in Eq. (34) with #, Eq. (33) finally yields the following phase field equation that governs
the evolution of the interface:

g (d)H + %(d —1"*V2d) = 0 in B. (36)
Note that we can obtain the diffuse representation of the interface by solving Eq. (36), as shown in Fig. 2.

In this study, we leverage the phase field not only as an indicator function for the location of cracks but
also for other defects such as cavities or geometrically complicated voids that does not fit for computational
homogenization. This approach may efficiently couple the Stokes flow inside the vugs (Bs) that interact
with pore fluid in the intact porous matrix (Bp) while both regions are evolving due to the crack growth. A
major advantage of this work is that free flow inside the fracture is explicitly replicated and hence there is
no need to introduce permeability enhancement models (e.g., cubic law) [Witherspoon et al., 1980, Konzuk
and Kueper, 2004, Jin and Arson, 2020]. This explicit treatment enables the simulations to remain physical
even in the situations (e.g., high Reynolds number, rough surface, aperture variation) where the validity of
the cubic law is questioned [Witherspoon et al., 1980, Miehe and Mauthe, 2016, Heider and Markert, 2017,
Wang and Sun, 2017, Sun et al., 2017, Choo and Sun, 2018, Chukwudozie et al., 2019, Wang and Sun, 2019].

Verification and experimental validation of the phase field fracture model for brittle solid has been well
documented in the literature. For brevity, similar studies are not provided in this paper. Interested readers
may refer to, for instance, such as Nguyen et al. [2016] and Pham et al. [2017].
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3.3 Variational formulation of the phase field Biot-Stokes model

We present a immersed phase field Biot-Stokes model designed to simulate the coupled hydro-mechanical
behaviors of flow of vuggy porous media with evolving fractures in the brittle regime. This section omits
the gravitational effects for brevity (i.e., g = 0).

The model problem with the sharp interface (Section 2) in which the system possesses two distinct
boundaries 0Bp and dBg that can both be decomposed into Dirichlet (95, 88}’;, 0By and aBg ) and Neu-

mann (9134, 615’73, 88?5 and BBZ) boundaries satisfying,

0Bp = 9BY, UdBL = oBY UdB], ; @ = 9B}, NaBy, = oBh NoB), 37)
0Bs = oBY UaBL = aBE UABL ; © =09BY NoBL = oBL NoBIL, (38)

where the union of Bg and Bp is B and the boundary domain follows the same treatment. Here we cap-
ture the transition of the constitutive responses of the solid constituent in the intact and liquefied states
through a partition of unity argument in the local constitutive responses. As such, we adopt only one solid
constituent and the balance of linear momentum equations in the sub-domains Bp and Bs [Eqgs (5) and
(11)] are combined into one set of equations over the domains B. The governing equations for the model
problem are summarized as follows:

(1-d) [V-(¢/ = pg,D)] +d(V-0") =0 in B, (39)
V-vs+V-wp, =0 in Bp, (40)

V-ofs +pfsg =0 in Bs, (41)

V-vs 4+ V-wg =0 in Bs, (42)

g (d)H + %(d —I"*V2d) =0 in B, (43)

(wfS — wa) -n* =0 onT¥ (44)

t;?s ‘n*+pp =0onl", (45)
t}s-m]*+yf“571]:(wfs—wf[))-mf =0onT" (46)

where the natural and essential boundary conditions are not included for brevity. Following the standard
weighted residual procedure, we multiply Egs. (39)-(43) with proper weight functions (y,, Cf,,, %y, G
and {), and integrating over their corresponding domain. The resultant weighted-residual statement reads
[Badia et al., 2009, Stoter et al., 2017],

/BVns:(0’—prI)(1—d)dV+/BV1ys:O'deV—/aBtDns-fDdl"zO, (47)
| (Veiav— [ Vg wpdv— [ Gpapdr [ g wp, - (cnt)dr =0, (49)
Bp Bp aBD I* S
o
ofs dv — Bedl — cofs . u* dT =
/BSanS.USdV /angfs b5 dT /r*qfs ¢ at dr <o, (49)
:tfs

/ gfs(vlzs)dv+/ & (Vowp,) dV =0, (50)
Bs Bs

/Bé{g’(d)’}{—i—%d} dV—s—/ng-gcl*VddV:O, 1)

where #p and dp is the prescribed traction and flux at the porous matrix, respectively; and ts is the fluid
traction. Then, we directly impose the interfacial transmissibility conditions [Eqs. (44)-(46)] into the field
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equations Egs. (48) and (50). Due to the fluid mass continuity (i.e., m}D + m}s = 0), the fourth term on the
left hand side of Eq. (48) becomes:

r* Crowpp - (—m")dl = — /1“* Cppwfs - mdl, (52)

while normal and shear force equilibrium (i.e., tj}D + t}s = 0) can be imposed at the third term on the left
hand side of Eq. (49), i.e.,

. 2 .
* o * Xsp * *
= Jo g el et ar = /r s - (Prpm )d”jzzl /r g {WTE (wp, —wy,) -mj | mjdl. (53)

Finally, we apply Egs. (24)-(27) in order to convert subdomain integrals (Bp and Bg) into integral over
the entire domain (), and to also transform the interface equations [Egs. (52)-(53)] into a set of immersed
boundary conditions. As a result, we get the weak statements for a phase field Biot-Stokes model, which is

to: find {us, Pfor Wesr Psr d} such that for all {5, Cfo/ e §fs, ’},
G'=Gh=GY=Gl=G"=0, (54)

where:

- (! . .
Gu—/BVqS.(a —PfDI)(l—d)dV+/BV175.asddV—/aBqu~thF, (55)
G,@:/Bng(Vus)(l—d) dV—'/BVCfD-wa(l—d) dv+/B§fD(wfs.Vd)dV—/angfDqur, (56)

Gg“:/Bvqfs:adedv—/qus-(prVd)dv

2 . .
4sp _ cm* | m* - -1
+]2/B11f5 [yf\/E(wa wy,) m]]m]HVdH av /angfs tsdrl, (57)
Gl :/Bgfs(V~us)ddV+/B & (Vewp,)ddV, (58)
6= [¢|g@n+ el ave [ ve-grvaav 59
B I* B ‘ '

Here, as pointed out in Stoter et al. [2017], the I'-convergence ensures that the immersed boundary condi-
tions imposed in Egs. (56)-(57) are consistent with the interface conditions [Eqs. (44)-(46)] if I* — 0, which
in turn confirms the mass conservation and force equilibrium for the entire system B.

4 Numerical examples

This section highlights the capacities of the immersed phase field model to capture the hydromechanical
interactions among the pore fluid in the cavities, cracks and the homogenized pore space and the host ma-
trix in two numerical experiments. Our focus is on modeling the problems that involve the mechanically-
driven pore fluid migration due to deformation and crack growth inside the solid skeleton. The first ex-
ample simulates the consolidation process of the porous material that contains a semi-circular cavity at
the bottom that serves as a pore fluid outlet, while the second problem showcases the fracture-induced
Stokes-Darcy flow in vuggy porous medium.

In order to solve Egs. (55)-(59) numerically, we adopt standard finite element method where the so-
lution procedure is based on the operator-split [Miehe et al., 2010, Heister et al., 2015, Suh et al., 2020]
that successively updates the field variables. In other words, the phase field d is updated first by solving
G? = 0, while all other field variables are held fixed, and the solver then advances the remaining variables
by solving {G*, GpD, Gg" , G’g}T = 0. The implementation of our proposed model including finite element
discretization and the solution scheme relies on the finite element package FEniCs [Logg et al., 2012a,b,
Alnees et al., 2015]. It is noted that there exists multiple different strategies to solve the same system of
equations. Since the exploration of different solution schemes are out of the scope of this study, we omit
the details for the implementation for brevity.
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4.1 Consolidation of porous matrix with a semi-circular cavity

We first simulate a consolidation problem, which has always been one of the key problems in geotechnical
engineering. While classical consolidation problem considers time-dependent water expulsion from the
homogeneous porous material, as illustrated in Fig. 3, this numerical example explores the case where the
system includes a cavity at the bottom that serves as a pore fluid outlet. This specific setting is designed to
simulate mechanically driven Stokes-Darcy flow without significant changes in microstructural attributes.

tp
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Fig. 3: Schematic of geometry and boundary conditions for the consolidation problem.

The problem domain is a water-saturated 1 m x 2 m sized rectangular porous matrix (Bp) that contains
a semi-circular cavity (Bs) whose diameter is 0.2 m. We prescribe a 1 kPa compressive mechanical traction
at the top, while zero pressure boundary is imposed at the bottom of the cavity so that the time-dependent
dissipation of pore pressure can be observed. The material parameters for this example are chosen as
follows. Intrinsic mass densities for the solid and fluid: ps = 2700 kg/m? and p ¢ = 1000 kg/ m3; Young's
modulus and Poisson’s ratio of the solid skeleton: E = 100 MPa and v = 0.25; initial permeability and
initial porosity of the matrix: kg = 1.0 x 1078 m? and ¢y = 0.4; dynamic viscosity of the fluid phase:
pr=10x 1073 Pa-sec; slippage coefficient asp = 0; and regularization length for the interface I* = 0.002
m. Furthermore, we assume that solid constituent remains intact in Bp throughout the simulation while
free fluid inside the cavity has zero particle concentration (i.e., ¢ = 0).

Fig. 4 shows the spatial distributions for the prime variables at t = 1.0 x 1073 sec. Here, we compute
fluid pressure and relative fluid velocity for the entire system as: ps = (1 —d)pg, +dps, and wy = (1 —
d)wy, + dwg,, respectively, since we have separate degrees of freedoms for pore and free fluids residing
in each regions Bp and Bs. The results imply that applied mechanical load #p at + = 0 builds up the pore
pressure which in turn affects the pore fluid to migrate towards the cavity. Furthermore, free fluid inside
the cavity tends to exhibit higher velocity and lower pressure compared to those of pore fluid, because of
different constitutive relations (i.e., Stokes equation and Darcy’s law) in each region. As illustrated in Fig.
5, we also investigate the time-dependent response of the system that clearly describes the consolidation
process and at the same time highlights the continuous pressure and velocity fields along y-axis (i.e., from
the center point of the cavity to the top-central point of the external boundary). At t = 0, the entire load
is taken by the incompressible pore water which triggers the fluid flow inside the medium. This fluid
flow is accompanied by a dissipation of pore pressure over time and an increase in the compression of the
entire system, which is consistent with previous studies on homogeneous materials [Li et al., 2004, White
and Borja, 2008, Kim et al., 2009, Wang and Sun, 2016]. In addition, the continuous pressure and velocity
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Fig. 4: Spatial distributions of the (a) phase field d; (b) solid displacement ||us|| [m]; (c) fluid pressure ps =
(1—d)py, +dpy, [Pa]; and (d) relative fluid velocity [|[w| = [|(1 — d)wg, +dwg,|| [m/s], att = 1.0 x 103
sec.

profiles imply that our model is capable of imposing mass continuity and force equilibrium at the interface
as a set of immersed boundary conditions, which confirms the validity of the model.

4.2 Comparison studies on fracture-induced flow in vuggy porous media

In the second set of experiment, we conduct numerical simulations within two different types of domains
that possess horizontal edge crack (Fig. 6): one explicitly captures the geometry of the large cavities in
the porous media; another one captures the influence of the cavities by increasing the porosity of the
homogenized effective medium. While the former approach adopt a more explicit representation of the
pore geometry and hence may provide more detailed information on the interactions between the vugs
and the propagating cracks, the latter approach could be numerically more efficient. Our objective is to
demonstrate, quantitatively, the difference of the two approaches such that a fuller picture on the trade-off
between computational efficiency, accuracy and precision of the predictions ca be established.

4.2.1 Modeling vuggy porous media

As illustrated in Fig. 6(a), we first consider a domain that consists of porous matrix with explicitly modeled
cavities. Our first representation consists of total nine cavities with different major and minor radii (Table 1)
that share the same aspect ratio of 2:1 and are tilted by 45°, such that the volume fraction of the cavities fcay
is 0.056. Here, we assume that the solid skeleton inside the cavities are completely damaged (i.e.,, d = 1),
while the porous matrix initially remains completely undamaged (i.e., d = 0). The material properties for
this case is chosen as follows: p; = 2700 kg/m3, pf = 1000 kg/m3, E=20GPa, v =02k =1.0x 10712
m?, iy = 1.0 x 1073 Pa-sec, asp = 0.1, Gc = 20 J/m?, and [* = 0.125 x 10~ m. In addition, the initial
particle concentration is chosen as cp = 0.6 and its upper bound as ¢max = 0.7, in order to mimic the
mudflow inside the cracks or cavities [O’Brien and Julien, 1988, Iverson, 1997].

In contrast, our second domain in Fig. 6(b) is a homogenized representation of Fig. 6(a), where all the
cavities are considered as a part of matrix pores. In this case, the porosity of the homogenized medium
is determined as: Pppom = (1 — Ocav )P0 + Ocav = 0.433. It is noted the correct homogenized effective prop-
erties often depend on the geometry of the vugs or inclusions, which can be determined from computed
tomographic images or directly obtained from the experiment [Sun et al., 2011a,b, Kim et al., 2016, Lee
et al., 2017]. Since the micro-structural attributes are not always available, this study adopts an alternative
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Fig. 5: Response of the saturated Biot-Stokes system under 1 kPa consolidation pressure. (a) Solid displace-
ment; (b) Fluid pressure; and (c) Fluid velocity.

Index 1 2 3 4 5 6 7 8 9
Major radius , [mm]  0.400 0.600 0.500 0.500 0.820 0.800 0.580 0.700 0.650
Minor radius r, [mm] 0.200 0.300 0.250 0.250 0.410 0.400 0.290 0.350 0.325

Table 1: The major and minor radii of the explicitly modeled elliptical cavities in Fig. 6(a).

sis  approach where the effective material properties are determined by using the equivalent inclusion method
s20 [Hashin, 1960, Zimmerman, 1991, Ramakrishnan and Arunachalam, 1993]. Following Ramakrishnan and
221 Arunachalam [1993] and by assuming that the matrix shares the same material properties of those chosen
a2 for Fig. 6(a), the effective bulk modulus (Kyop) and shear modulus (ppepm) for the homogenized represen-
s2s  tation [Fig. 6(b)] are determined as follows:

K(l — Gcav)z }1(1 - Gcav)z
= ey = M Pav) (60)
hom 1+ 1tv Hhom 1+ }11(13331)/ Do

2(1-2v) Ocav
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Fig. 6: Schematic of geometry and boundary conditions for the fracture problem. (a) The domain with
explicitly modeled cavities; and (b) its homogenized counterpart.

so that the effective Young’s modulus Ey,, = 16.50 GPa and Poisson’s ratio vy = 0.206. Assuming
that the inclusion permeability is much higher than the matrix permeability, we approximate the effective
permeability (kyon,) by following Markov et al. [2010] which is obtained based on the Maxwell’s formula,
ie.,

142

Khom = ko1 + 20cav) _ 1.18 x 10712 [m?]. (61)

1 - ecav
In addition, since all the cavities in Fig. 6(a) are completely isolated, we adopt the following effective
critical energy G, hom proposed by Jelitto and Schneider [2018] for the homogenized representation, which
depends on the volume fraction of the cavities, i.e.,

Gehom = Ge(1— 623) = 17.07 []/m?]. (62)

4.2.2 Mechanically driven fracture-induced flow

As illustrated in Fig. 6, we conduct two different types of simulations within each domain: the tension
tests with prescribed vertical displacement rate of 0.01 x 1073 m/s, and the shear tests with horizontal
displacement rate of 0.01 x 1073 m/s. In both tension and shear tests, the displacements are prescribed at
the upper boundary, whereas the bottom part of the domain is held fixed. We also impose hydraulically
insulated boundary conditions for the left and right boundaries while we permit water intake from the
upper and lower boundaries by imposing pg, = 0.

Fig. 7 illustrates the evolution of the phase field for both tension and shear tests in a computational
domain where the cavities are explicitly modeled, compared with the crack trajectories obtained from the
homogenized domain. The domain without cavities exhibits the crack patterns that are similar to the results
of previous studies on homogeneous solids [Miehe et al., 2010, Borden et al., 2012, Bryant and Sun, 2018,
Suh et al., 2020], while the domain with explicitly modeled cavities exhibit distinct crack patterns. More
importantly, Fig. 8 and Fig. 9 reveals that neglecting the interaction between the cavity and crack in the
homogenized model may lead to over-simplified global responses that lacks the distinctive characteristics
of the cavity-crack coalescence.

During the numerical experiments, the porous matrix initially undergoes linear elastic deformation
until the crack nucleation takes place. At this point, since tensile loading directly influences the volume
change of the material, both specimens under tensile load exhibit higher fluid influx at the top, compared
to those measured from the shear tests. After the first peaks shown in Fig. 8(a) and Fig. 8(b), cracks start to
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Fig. 7: Evolution of the phase field of the specimens subjected to the numerical tension and shear tests.

initiate from the tips of the pre-existing flaw since they experience higher stress concentration compared
to the matrix-cavity interface.

In both tensile and shear experiments performed on the vuggy specimen, the crack nucleation increases
the surface influx rate at the permeable boundaries as pore fluid starts to leak from the intact matrix to the
damaged regions regardless of the spatial homogenization. The two numerical specimens, nevertheless,
begin to behave differently when the cracks propagate towards the adjacent vugs and coalesce with each
other in both tension and shear tests in the vuggy specimen (Fig. 7) [Qinami et al., 2019, Suh and Sun,
2020]. These changes in surface influx cannot be replicated in the homogenized porous specimen as the
homogenization takes away the possibility of simulating the coalescence between the cavity and the crack.

After the coalescence of the cavity and the crack in the vuggy specimen, the reaction force in both
cases increases again with lower influx rates until it reaches the second peak (i.e., where crack nucleation
takes place at the matrix-cavity interface), and the crack eventually reaches both end of the specimens. This
result implies that the existence of vugs or cavities has a profound impact on the material behavior that
cannot be easily replicated in the homogenized effective medium. Consequently, either a more effective
macroscopic theory or a suitable multiscale technique is needed to incorporate the cavity-crack interaction
into the predictions.
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Fig. 8: Force-displacement curves obtained from (a) tension and (b) shear tests.
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Fig. 9: Fluid influx at the top surface over time measured from (a) tension and (b) shear tests.

Fig. 10 illustrates the pressure (ps) and x-directional velocity (w,) fields from a domain with explicitly
modeled cavities under tensile and shear loadings, at t = 0.476 sec and t = 1.012 sec, respectively, where
cracks start to propagate from the cavities. Here, the superimposed arrows in Fig. 10 indicate the direction
of the velocity vector wy = (1 —d)wy, + dwy,. In both cases, the leakage of pore fluid takes place towards
the interconnected cracks and cavities at the middle, while free fluid in Bgs tends to migrate towards the
center, the region where large crack opening displacement occurs. However, it is worthy to note that the
fluid flow occurs from the region that has negative pressure to the damaged zone where pf, ~ 0. Unlike
previous studies that use the cubic law to predict the hydraulic responses of the flow conduit [Mauthe and
Miehe, 2017, Heider and Markert, 2017, Wang and Sun, 2017, Chukwudozie et al., 2019], the pore pressure
distribution inside the void space is governed by the Stokes equation directly. This set of numerical exper-
iments again highlight that our proposed model is capable of simulating fracture-cavity interaction with
evolving interface, which may not be easily captured either by using hydraulic phase field fracture models
or by adopting classical Biot-Stokes model with sharp interface.

To assess the computational efficiency of the proposed model, we record the CPU time for both sim-
ulations. A laptop with a Intel Core i9-9880H Processor CPU with 16 GB memory at 2667MHz (DDR4) is
used to run both simulation on a single core. Both simulations are solved by the same Scalable Nonlinear
Equation Solver (SNES) available in FEniCS. In the case where vuggy pores are explicitly modeled, the
time taken to assemble the system of equation is 1.13 second and the averaged time taken to advance one
time step with (on average) 5 Newton-Raphson iteration is 35.69 seconds. Meanwhile, in the homogenized
case, it takes 1.17 second to assemble the system of equation and 33.34 seconds to advance one time step
with also (on average) 5 Newton-Raphson iteration. In general, simulations with the explicitly captured
vuggy pores require about 7% more CPU time to run the same simulation.

Future work may consider flow with higher Reynold’s number suitable for the Navier-Stokes equation
in the fluid domain. Such an extension is nevertheless out of the scope of the current study.

5 Conclusion

This article presents a new immersed phase field model that captures the hydro-mechanical coupling
mechanisms in vuggy porous media where brittle cracks filled with water may coalescence with pores
that trigger both redistribution of flow and macroscopic softening that cannot be captured without the
Stokes-Darcy flow. By generalizing the phase field as an indicator of defects, we introduce a simple and
unified treatment to handle the evolving geometries due to crack growths and the resultant changes of
constitutive responses without the need of re-meshing or introduction of enrichment functions. By directly



AlP

Publishing

397
398
399
400
401
402

403

404

405
406
407
408
409
410
411
412

413

17

Tension Shear

— | o —— P — —
-2.4e-05 00 2.0e05 | -1.2e-05 00 1.4e-05

wfs‘ﬂv wfs|iv

Fig. 10: Snapshots of the pressure pr = (1 —d)py, +dpg, [Pa] and velocity wy, [m/s] fields obtained from
the tension (t = 0.476 sec) and shear (¢t = 1.012 sec) tests.

simulating the flow inside the cracks, we bypass the need of introducing phenomenological permeabil-
ity enhancement model to replicate the flow conduit. This explicit approach can be advantageous over
the embedded discontinuity approach when there is a substantial crack opening and a flow near the lo-
cations with void-crack interaction where a homogenized pore pressure jump would not be sufficient to
capture the pattern of the pore pressure field in the defects. Future work may include the extension of
the proposed model to three-dimensional cases as well as extending the Stokes-Darcy flow model for the
generalized Navier-Stokes-Darcy flow for injection and other problems with higher Reynolds numbers.
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