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What can we learn from what the machine learned?



Classical elastoplasticity black-box neural networks
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5

Machine learning approaches for constitutive modeling 

Model-free 
approach
(no model to 
interpret)

Neural network material 
parameter identification
(but nothing new discovered, just use 
NN or ML as an optimization tool)

Perform 
well with 
limited data

Requires 
big  data to 
function

Hard to interpret results 

Easy to interpret results (e.g. check convexity..etc.)

Neural network 
constitutive laws
(indirect interpretation)

Symbolic regression
(often leads to unreadable long 
expressions) 

How do we get here?
How do we gain new knowledge?
How do we verify beyond data?



How about hand-crafted plasticity models?

Von Mises J2 plasticity
1910s 

Drucker-Prager
1950s 

Critical state soil 
mechanics 1960s 

Sand model with fabric 
tensor 2004 

Dependence on 
mean effective 
pressure

Dependence 
on void ratio

Dependence on 
fabric tensor

Figure from Rebecca Brannon 



§ Yield surface shapes and
their evolution (hardening) are
described with complex
mathematical expressions.

§ Many yield surface models
require special treatment and
model specific algorithms (e.g.
lack of smoothness in the
Mohr-Coulomb surface tips).

New yield surface takes long time to discover



New hardening model and flow rules takes long time 
to discover and they are even harder to calibrate



Previous work on generalizing plasticity models 

NURB Yield surface for perfect plasticity 
(Coombs, Petit, Motlagh, CMAME, 2016)

Cooperative game for deducing plasticity models via deep 
reinforcement learning (Wang & Sun, CMAME 2018, Wang, Sun, 
Du, CM, 2019)

Only works for perfect plasticity Need to program all choices in the decision 
tree and required prior knowledge



Machine learning plasticity with level set hardening



Machine learning with sub-goals -- Identification of  
initial yield surface using elasticity model 

RVE simulations 
(w FFT solver)

Identify initial yield 
surface and hardening 

Sobolev training for 
yield function

Initial yield point 
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Our approach:

𝜌, 𝜃, 𝜖!

Lode’s coordinates 
and plastic strain

%𝑓
Yield function

'𝜓
Elastic Energy 

functional

Higher-
order 

Sobolev
training -
Higher-
order 

activation 
functions.

• Two neural networks – hyperelastic energy 
functional and yield function.

• Utilize plasticity theory to combine the two 
networks (return mapping algorithm).

Vlassis et al, Sobolev training of thermodynamic-informed neural networks for smoothed elasto-plasticity models with level set hardening (2020)

Elastic and plastic behaviors decomposed.

Departure from classical elastoplasticity black-box neural networks



ML learning for hyperelasticity energy functionals



Sobolev training of a hyperelastic energy functional 
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Sobolev training of a hyperelastic energy functional 
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Sobolev training of a hyperelastic energy functional 
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Sobolev training of a hyperelastic energy functional 
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§ Interpretable neural network 
derivatives – higher-order 
derivative – thermodynamic 
constraints in the loss 
function (Sobolev training).

§ 𝑯𝟐 training: higher 
accuracy for energy, stress, 
and stiffness for the same 
number of samples.
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In order to implement implicit algorithms (elastoplasticity) ⇢ second-order derivatives of functionals

Higher-order activation functions

ReLU x = x

ReLU 0 = 0

ReLU x

where ∘ is the element-wise multiplication of vectors 

Increase “non-linearity” by adding Multiply layers

Increase number of Multiply layers:

Classical feed-forward architectures Our approach:

• Classical regression activation functions ⇢ piece-
wise linear ⇢ second-order derivatives of 
networks are locally zero



H2 training and higher order activation functions procure higher accuracy in the
energy, stress, and stiffness of predictions for the same number of samples
compared to the classical 𝐿" training methods.

𝐿! norm - 𝐻" norm - 𝐻! norm Training Comparison

𝐿" loss function 𝐻" loss function𝐻# loss function



Predictions of polycrystal elasticity for calibrated and unseen RVEs 

Predictions of elastic responses on unseen RVEs Graph isomorphism test 

Convexity test

Vlassis, Ma & Sun, CMAME, 2020, Vlassis & Sun, CMAME, 2021 20



ML learning for evolving yield function



Efficient yield function data sampling for new material
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Sampling on the 
π-plane for 
pressure 𝑝#

Identify yield points 
on 𝜎(, 𝜎), 𝜎* axes

Step 1

𝜎!𝜎"

The π-plane is perpendicular to the space diagonal and is passing through 
the origin of the principal stress axes. 

Lower-dimensional stress 
representation on the π-plane 
with Lode’s coordinates (ρ,θ)



Efficient yield function data sampling for new material
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Sampling on the 
π-plane for 
pressure 𝑝#

Identify yield points 
on 𝜎(, 𝜎), 𝜎* axes

Identify elastic region 
(convexity)

Sample yield function 
for different 

trajectories on π-
plane

Step 1 Step 2 Step 3



Efficient yield function data sampling for new material
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Sampling on the 
π-plane for 
pressure 𝑝#

Identify yield points 
on 𝜎(, 𝜎), 𝜎* axes

Identify elastic region 
(convexity)

Sample yield function 
for different 

trajectories on π-
plane

Step 1 Step 2 Step 3

Train NN on point 
cloud

Step 4 𝜎! = 𝜎#
= 𝜎"



1. Reduce dimensionality with π-plane:

2. Convert yield function into signed distance 
function by solving Eikonal equation in polar 
coordinates while enforcing the boundary f=0 

3. The resultant yield surface becomes 

where

Preprocess data as a level set initialization problem

Ω

fΓ

fΓ = φ−1(0)

Ω

φ(x)

Converting yield surface into a signed distance function
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2. Convert yield function into signed distance 
function by solving Eikonal equation in polar 
coordinates while enforcing the boundary f=0 

3. The resultant yield surface becomes 

where

Preprocess data as a level set initialization problem

Ω

fΓ

fΓ = φ−1(0)

Ω

φ(x)

Pre-process into 
signed distance 

function 

Converting yield surface into a signed distance function



1. Reduce dimensionality with π-plane:

2. Convert yield function into signed distance 
function by solving Eikonal equation in polar 
coordinates while enforcing the boundary f=0 

3. The resultant yield surface becomes 

where

Preprocess data as a level set initialization problem

Ω

fΓ

fΓ = φ−1(0)

Ω

φ(x)

Signed distance 
function

Converting yield surface into a signed distance function



Converting yield surface into a signed distance function

1. Reduce dimensionality with π-plane:

2. Convert yield function into signed distance 
function by solving Eikonal equation in polar 
coordinates while enforcing the boundary f=0 

3. The resultant yield surface becomes 

where

Preprocess data as a level set initialization problem

Ω

fΓ

fΓ = φ−1(0)

Ω

φ(x)

Signed distance 
function

Yield surface



Evolving yield surface by solving a Hamilton-
Jacobi Equation via neural networks  

Hamilton-Jacobi Equation

Assuming stationary flow 

where

where F is the speed function. Note that t is 
a pseudo-time. For our purpose, we replace 
it with a scalar internal variable ξ which is a 
monotonically increasing with time. We then use neural network to find F such that the 

solution of the H-J equation is the signed distance 
function version of yield function for a given ξ

Hardening interpreted as a level set extension problem



Capture complex hardening mechanisms

§ The yield function function neural network can capture a complex yield surface
evolution and predict the entire level set for an internal variable value (accumulated
plastic strain 𝜖$).

𝜎"𝜎"

𝜎#𝜎#

𝜎$ 𝜎$
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Performance comparisons with and without signed distance yield function 

Vlassis & Sun, under revision



Algorithmic tangent operator:

Elastoplasticity Framework with Neural Network 
Ingredients

34

• Two neural networks can be combined to 
predict the elastoplastic response –
hyperelastic energy functional and yield 
function.

• Depart from black-box recurrent neural 
network architectures – more interpretable
and robust

• Flexibility to change between different 
elastic and plastic neural network 
“ingredients”. 

• Framework readily usable for FEM 
simulations. Made possible with higher-

order Sobolev training and
higher-order activation
functions.



Algorithmic tangent operator:
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Made possible with higher-
order Sobolev training and
higher-order activation
functions.

(A) (A) + (B)

Elastoplasticity Framework with Neural Network 
Ingredients
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Results for unseen cyclic loading data

§ A classical machine
learning approach to
predict path-dependent
elastoplasticity behaviors
uses recurrent
architectures that are
usually black-box and fail to
predict unseen unloading
paths

§ We leverage classical
plasticity theory to make
interpretable predictions
even on unseen loading
paths.
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F

G

I

J

K

L

yield surface (F)

yield surface (G, H)

yield surface (I, J)

yield surface (K, L)

H

Results for unseen cyclic loading data

• Our elastoplastic framework 
can already predict cyclic 
loading path only trained 
on monolithic data.
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ML-predicted dissipation and plastic flow direction

Vlassis & Sun, CMAME 2021



Our framework can be readily implemented in FEM simulations

Elastoplasticity NN Framework – Polycrystal Plasticity Benchmark



Elastoplasticity NN Framework – Polycrystal Plasticity Benchmark

§ Polycrystal yield function
discovered from data – no need for
complex yield function shape
descriptors.

§ Neural networks can fully replace
the elastoplastic constitutive
model – replace heavy FFT
simulations at every material point.



𝜎& = 𝜎" = 𝜎'
𝜎& = 𝜎" = 𝜎'

Benchmark Study: Predicting hardening/softening mechanism for pressure-
dependent materials via ONE unified level set model

• Algorithm is readily generalizable for pressure dependent models
• Data-driven formulation any capture any form of hardening (isotropic,

kinematic – change of size / shape / translation / rotation of yield
surface in 3D stress space)

Rotational 
hardening

Frictional 
hardening

Isotropic hardening Kinematic 
hardening

s1

s2

s3

s1

s2

s3



𝜎& = 𝜎" = 𝜎' 𝜎& = 𝜎" = 𝜎' 𝜎& = 𝜎" = 𝜎'

Ongoing work: Emulating pressure-dependent models

• Return mapping 
algorithm currently 
generalizable for 
isotropic pressure-
dependent models



What data do we need to calibrate and validate the ML-generated 
constitutive theories?



Adversarial deep reinforcement Learning

44 | Meta-modeling of Multi-scale Geomaterials with Deep Learning

Example of adversarial learning:
Adversarial framework for effective self-supervised learning on grasp policy in robotics

Pinto, Lerrel, James Davidson, and Abhinav Gupta. "Supervision via 
competition: Robot adversaries for learning tasks." 2017 IEEE 
International Conference on Robotics and Automation (ICRA). IEEE, 
2017.
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Two-Agent non-cooperative game for validation/falsifying models 

• Model the action of two experimentalists as a game
• Dee-Q-learning creates AI to play the game and learn 

from repeating generating models automatically  

Wang, K., Sun, W., & Du, Q. (2020). A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying 
constitutive laws with parallelized adversarial attacks. Computer Methods in Applied Mechanics and Engineering, 373, 113514.



Two-Agent non-cooperative game for validation/falsifying models 

1. A non-cooperative game is run for two agents
• Agent 1 is tasked with generating new experimental data to 

calibrate a model. 
• Agent 2 try to undermine the calibration effort of Agent 1 by 

finding the tests that maximize the calibration errors  

2. Material: DEM Representative Volume Element

3. Game choices for experimentalist and adversary agents:
1. Triaxial Compression/Extension/True Triaxial Tests 

(DTC, DTE, TTC)

1. Loading/Unloading/Reloading Paths

1. The same decision Tree available for the agents

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with 
adversarial attacks, CMAME, 2020. 
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Game Action for the non-cooperative game – Making choices for 
an experiment 

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with 
adversarial attacks, CMAME, 2020. 
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Example: Traction-Separation Law



Game reward for the non-cooperative game 

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with 
adversarial attacks, CMAME, 2020. 

48

1 – perfect match
0 – model as accurate as using the mean of observed data
< 0 when using the mean is more accurate than using the model 

• Re-scaling the efficiency index to range -1 to 1

• Competing reward 

• Efficiency Index  (Nash-Sutcliffe)

Cut-off value Decay coefficient Historically lowest EI



Game Play for the non-cooperative game 

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with 
adversarial attacks, CMAME, 2020. 
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Reinforcement learning performance of the experimentalist/adversary game 
(Drucker-Prager)

Initially, both agents are exploring the parametric space and attempt to 
improve their estimated Q values through interacting with each others.

50



Reinforcement learning performance of the experimentalist/adversary game 
(Drucker Prager)

As the game progress, both agents have generated sufficient knowledge such that the Q table 
converges – the calibration agent tells you the strength of the models and where the Drucker-
Prager model scores the best (monotonic triaxial compression), while the adversarial agent found 
that the DP model is not suitable to predict cyclic responses of DEM RVE.
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Reinforcement learning performance of the experimentalist/adversary game 
(Bounding surface plasticity model)
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Defense experimentalist + model calibrator Attack experimentalist



Reinforcement learning performance of the experimentalist/adversary game
(ML Traction- separation model)
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Defense experimentalist + model calibrator Attack experimentalist



Evolution of the estimated policy value



Results of competitions
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Drucker-Prager Model Bounding-surface critical state plasticity

ML-generated traction separation law



Some challenges in the data-driven model free approach:
• Data hungry (less assumption higher need for data)
• Scalability (online search over many data-points)

Observation:
• Solid constitutive models: high fidelity
• Fluid constitutive models: low fidelity

Even in log scale

Our contribution:
• We introduce for the first time a coupled multiphysics

model-free formulation based on a non-parametric 
data-driven algorithm for poroelasticity applications

• Two hybrid formulations are developed in cases where 
model (human-written or surrogate) performs 
satisfactory. (Data efficient)

• We introduce a simple projection that maps the 
energy metric space onto the Euclidean metric space. 
Using this treatment, high dimensional data can be 
efficiently stored in tree data structures for fast 
nearest neighbor search. (Scalable)

Exponentially faster model-free algorithm

Hybrid model free solution:
Nonlinear heterogenous problem with real data from FFT simulation and sandstone 3D images 

Related work 2: An accelerated hybrid data-driven/model-based approach for poroelasticity problems with multi-fidelity multi-physics 
data (with Bahador Bahmani)

Andra et. all 2013

Validation of the developed model-free 
formulations

Two order 
of 
magnitude!

23 43 83 163 323 643 1283

Number of Data Points

102

103

104

t t
ot

al
[s

]

kd-tree

brute-force

4 minu
tes

6.3 hours

Kozeny-Carman fitted

Initial heterogeneous porosity



Future Work: Geometric learning for evolving connectivity graphs

ØStress evolutions under various loadings (grain scale)
Iso-compress Pure shear Simple shear

C. Liu", W.C. Sun, ILS-MPM: an unbiased implicit level-set-based material point method for frictional particulate contact mechanics of deformable
particles, Computer Methods in Applied Mechanics and Engineering, , doi:10.1016/j.cma.2020.113168, 2020. 57

𝔾

𝑭
ψ

Unsupervised 
classification of 
graphs - graph 
convolutions

Regression of 
energy 

functional 𝜓

*

graph

strain

energy

Vlassis, Ma & Sun, CMAME 2020

(For convolutional neural network on voxel images, see 
Frankel et al, CMS 2019)

Creating low-dimensional 
representation graph to 
represent microstructures 
from voxel images

https://doi.org/10.1016/j.cma.2020.113168


Conclusion – Future work

Concluding Remarks:
We examine some potential applications of undirected 
weighted graph and directed graph for computational 
mechanics,  in particular, we introduce ways to 

1. Generalized the modeling process of elasto-
plasticity problems. 

2. Write, validate and falsify a constitutive law 
represented by directed graph via non-cooperative 
game. δδ δn,m tn,m

ρg
lsp

ct

da

Asf

A f

CN

ϕ tt

Undirected weighted graph

Directed Multi-graph
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Thank You! 

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

More information can be found at 
www.poromehanics.org
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