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Classical elastoplasticity black-box neural networks

Classical “recurrent” black-box architectures
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Machine learning approaches for constitutive modeling

Easy to interpret results (e.g. check convexity..etc.)

A How do we get here?

How do we gain new knowledge?
How do we verify beyond data?

Neural network material

parameter identification
(but nothing new discovered, just use
NN or ML as an optimization tool)

Requires Perform
big data to Symbolic regression well with
function (often leads to unreadable long limited data
expressions)

Model-free Neural network

approach constitutive laws

(no model to (indirect interpretation)

interpret)

Hard to interpret results 5



How about hand-crafted plasticity models?

Von Mises J2 plasticity

Linear Drucker-Prager

1910s Dependence on s i
mean effective y
Drucker-Prager pressure Z
1950s
Dependence
on void ratio Mohr-Coulomb

Critical state soil
mechanics 1960s

Dependence on
Sand model with fabric fabric tensor
tensor 2004

Figure from Rebecca Brannon



New yield surface takes long time to discover
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von Mises

" Yield surface shapes and
their evolution (hardening) are
described  with complex
mathematical expressions.

" Many yield surface models
require special treatment and
model specific algorithms (e.g.
lack of smoothness in the
Mohr-Coulomb surface tips).

Mohr-Coulomb

EJF(UI:U%U&Sy) =
1 5
5 max(lal - 0'2|, |0'2 - 0'3|’ |03 - 01|)

o1
E_ESySO




New hardening model and flow rules takes long time
to discover and they are even harder to calibrate
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Previous work on generalizing plasticity models

NURB Yield surface for perfect plasticity
(Coombs, Petit, Motlagh, CMAME, 2016)
Du, CM, 2019)

(P6) Plastic flow direction defined as [63,104]

milow — 2
1 +dg
il = 1
/ 2
1 +dg

dg = (1+a)(Mg+q/p)

where «a, Mg are material parameters.
(P7) Plastic flow direction defined as [44]

m,{luw= dg -
1+ d2

mxf’" = !
2
[1+d2

dg = (1 + a)(Mgexpmgy + q/p)
v =e—eo+A(p/pa)’

Cooperative game for deducing plasticity models via deep
reinforcement learning (Wang & Sun, CMAME 2018, Wang, Sun,

Only works for perfect plasticity Need to progr.am all _chonces in the decision
tree and required prior knowledge
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Machine learning with sub-goals -- Identification of
initial yield surface using elasticity model

Initial yield point

/

140 A

—e— elastic
—— plastic

138

136

O11

134

132 A

130 1

RVE simulations |dentify

(w FFT solver) = surface and hardening

11

0.082 0.083 0.084 0.085 0.086 0.087

€11

initial yield

£=0.0

o1

—— NN
Sobolev training for
yield function



Departure from classical elastoplasticity black-box neural networks

Our approach:

Elastic and plastic behaviors decomposed.

Lode’s coordinates

. and plastic strain
strain tensor T
€ p, 6, €
—
Higher-
order
Sobolev
training -
Higher-
order
activation
functions.
Elastic Energy Yield function
functional

Two neural networks — hyperelastic energy
functional and yield function.

Utilize plasticity theory to combine the two
networks (return mapping algorithm).

Vliassis et al, Sobolev training of thermodynamic-informed neural networks for smoothed elasto-plasticity models with level set hardening (2020)
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Sobolev training of a hyperelastic energy functional

14

strain tensor
€

{

A7 z*/’p
~2 W 74 ./: < —~ ~
S P e ——a= —— =
AR de de
Fy
e\ i
N } stress stiffness

Higher-Order
Sobolev training



Sobolev training of a hyperelastic energy functional

Sobolev training:
requires less data

strain tensor o
. L, p_4sv samples, smooth
de approximated functions,
stiffness accurate approximated

derivatives

Higher-Order
Sobolev training

15



Sobolev training of a hyperelastic energy functional

Sobolev training:
requires less data

strain tensor o
. L, p_4sv samples, smooth
de approximated functions,
stiffness accurate approximated

derivatives

Higher-Order
Sobolev training

L, norm: Constrain energy predictions [classical NN]:

1 N
—12
= o - il
i=1

16



Sobolev training of a hyperelastic energy functional

Sobolev training:
requires less data

strain tensor o
. _d@e samples, smooth
de approximated functions,
stiffness accurate approximated

derivatives

Higher-Order
Sobolev training

L, norm: Cor;vstraln energy predictions [classical NN]: . Interpretable neural network

lzull’ —7l? derivatives — higher-order
NP TR derivative — thermodynamic
constraints in the loss

H, norm: Constrain energy and stress predictions [Sobolev training, Google Deep Mind]: . .
1 &Y P [ & 8 P : function (Sobolev training).

N
1 I I | .
=D e =Bl + 5 llo ~ail3 = H”training: higher
i=1 =1 accuracy for energy, stress,
H, norm: Constrain energy, stress and stiffness predictions [our extension]: and stiffness for the same
N N H number of samples.
1 2 1 2. 1 a2 2 mrmims = ETETETETETETETE
WZ”% - ”2 ‘*'WZ“U: —oillz + WZ”C:' - &llz use of higher-order activations functlons

17 l=1 l=1 [=1 .......................



Higher-order activation functions

In order to implement implicit algorithms (elastoplasticity) -+ second-order derivatives of functionals

Classical feed-forward architectures

ReLU(X) = x

ReLU(0) = 0

ReLU(e) = max(0, e)

ReLU(x) Architecture: ddd

INPUT

DENSE (ReLU)

X DENSE (ReLU)
DENSE (Linear)

OUTPUT

networks are locally zero

+ Classical regression activation functions - piece-
wise linear -» second-order derivatives of

Our approach:

Increase “non-linearity” by adding Multiply layers

h" = Multiply(h" 1) = i1 o B!

where o is the element-wise multiplication of vectors

Architecture: dmdd Architecture: dmdmd  Architecture: dmmdmd

—_—
DENSE (ReLU)
DENSE (ReLU)

Increase number of Multiply layers:
18 >




L? norm - H! norm - H% norm Training Comparison

Energy Training Loss Stress Training Loss Stiffness Training Loss
10! 10-1
-2
10 10—2
102
10-4 1073
@ n 1074 o107
0 7] 0
o o -5 [e]
=106 =10 104
-6
10 10-5
107° 10-7
-6
10-® 10
10° 10 10 10° 10° 10! 102 10° 10° 10! 10 10°
Epoch Epoch Epoch

H? loss function

H? loss function

L? loss function

H?2 training and higher order activation functions procure higher accuracy in the
energy, stress, and stiffness of predictions for the same number of samples
compared to the classical L, training methods.



Predictions of polycrystal elasticity for calibrated and unseen RVEs

Predictions of elastic responses on unseen RVEs Graph isomorphism test

0.06
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convexity check
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Efficient yield function data sampling for new material

Sampling on the
n-plane for
pressure p,

02

Step 1

01

Identify yield points
on 04,07, 03 axes

o3

Lower-dimensional stress
representation on the m-plane

03

with Lode’s coordinates (p,0)

o2

O1=0=03

E ; e O "&; =0 =03
1 /,i »0q
A1
1

03

01

The n-plane is perpendicular to the space diagonal and is passing through

the origin of the principal stress axes.

22



Efficient yield function data sampling for new material

Sampling on the

n-plane for
pressure p,

Identify yield points
on 04,07, 03 axes

Identify elastic region
(convexity)

Sample yield function
for different
trajectories on Tt
plane
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Sample yield function

for different
trajectories on =
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Converting yield surface into a signed distance function

Preprocess data as a level set initialization problem

1. Reduce dimensionality with n-plane:
x(011, 09, 033, 012, 023, 013) = X(071,02,03) = X(p, 0).

2. Convert yield function into signed distance
function by solving Eikonal equation in polar
coordinates while enforcing the boundary =0

Rp| — 9o 1,99,

3. The resultant yield surface becomes

0 on fr(yielding) ,

d(X) outside fr(inadmissible stress)
p(xt) =
—d(X) inside fr (elastic region)

where

~ o~

d(%) = min ([ —r|).

fo




Converting yield surface into a signed distance function

Preprocess data as a level set initialization
problem

1. Reduce dimensionality with n-plane:

x(011, 022, 033, 012, 023, 013) = %(07,02,03) = X(p, 0).

2. Convert yield function into signed distance
function by solving Eikonal equation in polar
coordinates while enforcing the boundary =0

Rp| — 9o 1,99,

3. The resultant yield surface becomes

0 on fr(yielding) ,

d(X) outside fr(inadmissible stress)
p(xt) =
—d(X) inside fr (elastic region)

where

~ o~

d(%) = min ([ —r|).

Yield surface data




Converting yield surface into a signed distance function

Preprocess data as a level set initialization problem

1. Reduce dimensionality with n-plane:
x(011, 09, 033, 012, 023, 013) = X(071,02,03) = X(p, 0).

2. Convert yield function into signed distance
function by solving Eikonal equation in polar
coordinates while enforcing the boundary =0

Rp| — 9o 1,99,

3. The resultant yield surface becomes

0 on fr(yielding) ,

d(X) outside fr(inadmissible stress)
p(xt) =
—d(X) inside fr (elastic region)

where

~ o~

d(%) = min ([ —r|).
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Converting yield surface into a signed distance function

Preprocess data as a level set initialization problem

1. Reduce dimensionality with n-plane:
x(011, 09, 033, 012, 023, 013) = X(071,02,03) = X(p, 0).

2. Convert yield function into signed distance
function by solving Eikonal equation in polar
coordinates while enforcing the boundary =0

Rp| — 9o 1,99,

3. The resultant yield surface becomes

0 on fr(yielding) ,

d(X) outside fr(inadmissible stress)
P(x,t) =
—d(X) inside fr (elastic region)

where

~ o~

d(%) = min (|¥ —%r|).

Pre-process into
signed distance
function

Q

fo

Q




Converting yield surface into a signed distance function

Signed distance
function

Preprocess data as a level set initialization problem

1. Reduce dimensionality with n-plane:
x(011, 09, 033, 012, 023, 013) = X(071,02,03) = X(p, 0).

2. Convert yield function into signed distance
function by solving Eikonal equation in polar
coordinates while enforcing the boundary =0

Rp| — 9o 1,99,

3. The resultant yield surface becomes

0 on fr(yielding) ,

d(X) outside fr(inadmissible stress)
p(xt) =
—d(X) inside fr (elastic region)

where

~ o~

d(%) = min ([ —r|).



Converting yield surface into a signed distance function

Preprocess data as a level set initialization problem

1. Reduce dimensionality with n-plane:
x(011, 09, 033, 012, 023, 013) = X(071,02,03) = X(p, 0).

2. Convert yield function into signed distance
function by solving Eikonal equation in polar
coordinates while enforcing the boundary =0

Rp| — 9o 1,99,

3. The resultant yield surface becomes

0 on fr(yielding) ,

d(X) outside fr(inadmissible stress)
p(xt) =
—d(X) inside fr (elastic region)

where

~ o~

d(%) = min ([ —r|).

Signed distance
function

Yield surface




Evolving yield surface by solving a Hamilton-
Jacobi Equation via neural networks

g2

Hardening interpreted as a level set extension problem

Hamilton-Jacobi Equation

d¢ »

- -V* =0

T, +v ¢
Assuming stationary flow

o ol _

E +F|V ¢| =0.

where F is the speed function. Note that t is
a pseudo-time. For our purpose, we replace
it with a scalar internal variable § which is a
monotonically increasing with time.

¢ — Pir1 t,
Fi ~ 7 =
G — & where ¢ /0 Adt,

We then use neural network to find F such that the
solution of the H-J equation is the signed distance
function version of yield function for a given §



Capture complex hardening mechanisms

O:
o)) 2
_ 3
£, =0.0
level set isocontour prediction
—— yield surface prediction / ¢ ~1(0)
03 | 01 01

. The yield function function neural network can capture a complex yield surface
evolution and predict the entire level set for an internal variable value (accumulated
plasticstraim e, ).




Performance comparisons with and without signed distance yield function

Yield Function Training Loss

10714

33

101 102 103
Epoch
—— RVE1 —— RVE?2
----- RVE1|[V¢=1|| ----- RVE2|[Vé=1|

Re-initialization Condition Training Loss

\
AR

_____ v{#. '&v
b 1, \...\s*—'-'\\\.lﬂ
160 1(')1 1(')2 163
Epoch
RVE 3 e s
NS RVE 4 ||V¢ = 1|

Vlassis & Sun, under revision



Elastoplasticity Framework with Neural Network
Ingredients

Algorithm 1 Return mapping algorithm in strain-space in principal axes for an isotropic hyperelastic-
plastic model

. Compute €5, = €5 + Ae. + Two neural networks can be combined to

- Spectraly cecompose 6y = L i @ ryperelastc onercy functional and yield

. Computd of = 99 /de® a’ceetr

Put{4 = O /€A pt €, function.

» Depart from black-box recurrent neural
network architectures — more interpretable
and robust

+ Flexibility to change between different
elastic and plastic neural network

Frrreesss : “‘ingredients”.

: : . : . _ ) : + Framework readily usable for FEM
Algorithmic tangent operator: : Made possible with higher- : simulations.

: order Sobolev training and :

1

2

3

4: if f(a{r,af, 0%, Kn) < 0 then

5: Set oyy1 = Yo Ugntr(A) @ n'"(4) and exit.
6: else

7 Solve for €, €5, €5, and « such thaf (U{r, off, olf, k) = 0.
8 Compute 07y 1 = Yy (alﬁe/ae ) n™ Y @ n™ 4 and exit.

041 _ 90341

_ — - higher-order activation
Cn+1 a€n+1 aez’:r_l - functions.
) " 13 ............. (TB—(TA ........ ) (AB) (48) (BA)
Cntl1 = Z Z aABm ®m + = > Z eetr_eetr m ®m +m ©m
A=1B=1 A=1B#A \"B "A
A aO'A Z aO'A aec _ i 82¢e 86%
: ae%“‘ ) 6% p) €etr = aé‘; aec aeetr 34




Elastoplasticity Framework with Neural Network

Ingredients
Algorithm 1 Return mapping algorithm in strain-space in principal axes for an isotropic hyperelastic-
plastic model ( A ) ( A ) + (B)
1: Compute €57, = e, + Ae.
. t 3 tr t tr(A
2: Spectrally decompose €', =3 ) _; €5 n 1(4) @ ntr(4), f ¥ \
3: Computel o = 9y /e, at st 1751 :
4: if f (off, 03,05, %) < O then 150 |
5: Set oyy1 = Yo Ugntr(A) @ n'"(4) and exit. 125 :
6: else |
7 Solve for €5, €5, €5, and « such thaf ((T{r, off, olf, k) = 0. =100 i
8 Compute 07y 1 = Yy (alﬁe/ae ) n™ Y @ n™ 4 and exit. © 751 !
1
:- -------------------------------------- " 50< :
Algorithmic tangent operator: : Made possible with higher- : 75 | ,
: order Sobolev training and : !
Cpil = 9T +1 = 90741 - higher-order activation : 01" ] ' '
T 9enq dectr | : functions. ; 0.00 0.05 0.10 0.15 0.20
n+ : : £11
" oo (TB—(TA ........ g ) g )
Cn+1:ZZ“ABm om™ 45 ) ), | e (’" QmT +mTT 9 m )
A=1B=1 A=1BZA \ B ~€a
3 2 77 e
dap = aO'A Z aO'A aec _ Z J ll)e aec
B et — Je Jestr — |\ 9€$,0€. /][0 35
B C C=1 AYC




Results for unseen cyclic loading data

150

100

50

on
o

=50

-100

-1501 £

150

100

50

on
o

=50

-100

-150

—— benchmark FFT DNS
elastoplastic step-Dense

—0.10 -0.05 0.00 0.05 0.10

-0.10 -0.05 0.00 0.05 0.10
&n

011

011

150
100

501

=50

—100
—1501

150

100

50

=50

—100

—-150

—200

—e— elastoplastic GRU
—— elastoplastic ConvlD

—0.16-0.050.00 0.05 0.10

-0.10 -0.05 0.00 0.05 0.10
€11

—s— our method (H-) hardening)

A classical machine
learning approach to
predict path-dependent
elastoplasticity behaviors
uses recurrent
architectures that are
usually black-box and fail to
predict unseen unloading
paths

We leverage  classical
plasticity theory to make
interpretable predictions
even on unseen loading
paths.
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Results for unseen cyclic loading data

150
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50

=50

-100

-150

150

100

50

=50

-100

-150

—— benchmark FFT DNS
—+— elastoplastic step-Dense

—0.10 -0.05 0.00 0.05 0.10

-0.10 -0.05 0.00 0.05 0.10
&

O11

150
100
50

=50
—100
—150

—0.16-0.050.00 0.05 0.10

150

100

50

=50

—100

—-150

—200

—e— elastoplastic GRU
—— elastoplastic ConvlD

-0.10 -0.05 0.00 0.05 0.10
€11

—a— our method (H-J hardening)

02

yield surface (K, L)
yield surface (I, J)
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yield surface (F)

* Our elastoplastic framework
can already predict cyclic
loading path only trained
on monolithic data.

37



ML-predicted dissipation and plastic flow direction
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Elastoplasticity NN Framework — Polycrystal Plasticity Benchmark

polycrystal
microstructure

8
Von Mises Stress

\l\
>
o O o
B8 8
Plastic Strain

[
I 0.02
0.0e+00

Our framework can be readily implemented in FEM simulations




Elastoplasticity NN Framework — Polycrystal Plasticity Benchmark

Von Mises stress

350
300
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point A
= point B

£=0.0

01

— NN

= Polycrystal

yield function
discovered from data — no need for
complex vyield function shape
descriptors.

Neural networks can fully replace
the elastoplastic constitutive
model - replace heavy FFT
simulations at every material point.




Benchmark Study: Predicting hardening/softening mechanism for pressure-

dependent materials via ONE unified level set model

Isotropic hardening Kinematic
hardening

0-1=O-2=O-3

+ Algorithm is readily generalizable for pressure dependent models ol
+ Data-driven formulation any capture any form of hardening (isotropic, Rotationa

kinematic — change of size / shape / translation / rotation of yield hardening
surface in 3D stress space)

Frictional
hardening




Ongoing work: Emulating pressure-dependent models

* Return mapping
algorithm currently
generalizable for
isotropic pressure-

aepenaent maoaeis
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What data do we need to calibrate and validate the ML-generated
constitutive theories?

&5 COLUMBIA | ENGINEERING
TN The Fu Foundation School of Engin

neering and Applied Science



Adversarial deep reinforcement Learning

Example of adversarial learning:
Adversarial framework for effective self-supervised learning on grasp policy in robotics

Snatching Adversary

Pinto, Lerrel, James Davidson, and Abhinav Gupta. "Supervision via
competition: Robot adversaries for learning tasks." 2017 IEEE
International Conference on Robotics and Automation (ICRA). |EEE,
2017.

2% COLUMBIA | ENGINEERING
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Two-Agent non-cooperative game for validation/falsifying models

Reward

Experimentalist

Experimentalist

State

(Protagonist) (Adversary)
State Action Action
A 4 \ 4
Protagonist Adversary
Decision Tree Decision Tree
30055 00k soours” | Sooks
P | L4 5
A W e o
0£;v‘rvn.|:,;r|vivlvwv' "”o,n;n:‘”‘”o‘l;s“‘”
A SRS
O RN
Perform Perform
Experiments - Experiments
Material
Calibration Testing
Data Data
\ 4 \ 4
Constitutive
Environment Model

Reward

Environment Idealized multigraph for constitutive models validated against unseen data

Agent Human or Al

State s The generated constitutive laws
Action a The decisions that lead to the generation of constitutive laws
Reward r Score (objective function) of the constitutive model

v(s) Expected model score of state s

Q-value Q(s,a) | Expected model score from taking action a at state s

(s, a) Probability of taking action « at state s

Model the action of two experimentalists as a game
Dee-Q-learning creates Al to play the game and learn
from repeating generating models automatically

Wang, K., Sun, W., & Du, Q. (2020). A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying
constitutive laws with parallelized adversarial attacks. Computer Methods in Applied Mechanics and Engineering, 373, 113514.
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Two-Agent non-cooperative game for validation/falsifying models

Sample po: '300kPa’  '400kPa’  '500kPa’
1. A non-cooperative game is run for two agents — ™~
* Agent 1 is tasked with generating new experimental data to Sample e 0.dooss 060055 A
calibrate a model. [ /k/ \ a
* Agent 2 try to undermine the calibration effort of Agent 1 by Type: o A\ il A\ /FT§ /’\
finding the tests that maximize the calibration errors o AAAA / l\ AAA A i ’\A/\ /\
2. Material: DEM Representative Volume Element nload Target MMM \L“AMIOM m M
i
3. Game choices for experimentalist and adversary agents: Reload Target: SUUM iﬂunl“ Jil “l
1. Triaxial Compression/Extension/True Triaxial Tests LA TRURL YT IR

(DTC, DTE, TTC)
1. Loading/Unloading/Reloading Paths

1. The same decision Tree available for the agents

, o &y
0y & .
a =axial o
r =radial Fixed

46
A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with
adversarial attacks, CMAME, 2020.



Game Action for the non-cooperative game — Making choices for
an experiment

NormTangAngle: 0 %N

Example: Traction-Separation Law A\/ ~ ﬂ\/ \ﬂ\ \\ﬂ\
ot e TSIV I I T
TC; = ‘NormTangAngle {0‘%5’}15, 300, ‘45°, ‘60, _— Sjop m X Am {o.mlm { ﬁz { AA\ { Aﬁs
TngiNumCy'cle’ (o, v, 9} l | | “H | | m | | | 0“\
v ol 0
TC, = “Target2’ {NaN’, “0.0°, ‘0.1, ‘0.2%} get2: 0.0 0.1 0.2

.11
i O
[Tl

Target4: 0.0

TCs = ‘Target3’ {'NaN’, ‘0.1, ‘0.2, °‘0.3'} IMI { Hm 2
TCg = “Targetd’ {‘NaN’, ‘0.0, ‘0.1", °‘0.2} Target3: Stoﬂ)m { 0.1 mm
el || M

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with 47
adversarial attacks, CMAME, 2020.



Game reward for the non-cooperative game

« Efficiency Index (Nash-Sutcliffe)

ZNdma |—da'a yrod |f 1 — perfect match
' 7 € (=00, 1.0l.  0-—model as accurate as using the mean of observed data
< 0 when using the mean is more accurate than using the model

Ez{/szl_

ZNdma |—data (Ydata)l

» Re-scaling the efficiency index to range -1 to 1

min max min max
min(max(E), ¢, ETM), EM3) — 0.5  (EMir 4 Ena
Emm Emm

SCOREprotagonisl or adversary — 2 %

’

« Com peting reward Decay coefficient Cut-off value  Historically lowest El

! /

Rewardpromgonist = — 1 + (SCOREpyotagonist + 1) * exp [—ascore * max(Eyd' — min({Ey¢}), 0)].

Rewardadversary = — SCOREadversary .

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitlitive laws with
adversarial attacks, CMAME, 2020.



Game Play for the non-cooperative game

Protagonist Experimentalist Agent

Initial state s, State s, Final state
S Action Action -~ Action Action PN
TN e Gy oo gty apampy s
s A A A
0.60 \ oc0\ 0.60\,
o Action selected l

St

S

| aj.os |
| l I ‘ i‘f'lt’
THIMIATE
Policy probability m 2P Protagonist 2
Value position vq oMonte Carlo Tree vt A t _ reward Dae
Searches 2 53 S\, /
Predimv W™ § AVt Train NP
o\ Constitutive
VY Model
Adversary Experimentalist Agent o A
Initial state s, State s, Final state sy
Action Action Action Action Testi
Self-play /- - - . @~To Ap_1~T¢_q /,} j“"“"‘j\\‘“““"ﬂ:ﬁ\ ag~Ty ar—1~Mr—q < i““"'ﬂ\?“"“":ﬁ\ ]e)sa::g
i D‘»ﬂ - m‘: /\ Action selected ‘ n\k 1\/ ’)‘\ J
() i “,‘,\,‘ according to HHI'I\”'VI\“ |
AL Mzt AAAMAN] potiey ) i
ﬂ.‘.u‘l‘u‘ | ‘\ ‘ h JUTLAIAA ‘l‘ {‘ I ﬁ.‘?\ﬁt.“ﬂtf\‘;-\l:’"?\lﬂﬁ ‘Mu,dm‘u.‘(\\“\ & \M‘ probabilities ﬁ A Wil I b A\
T IHIH UL
N T [T
Policy probability 7, b4 2N Adversary ¢
Value position vq 0Monte Carlo Tree v: / f reward
1

Searches v r AWTE 8
Predict policy/valu Pt Xﬁ X

¥
3 i
o*—®

» /I‘ rain

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with

adversarial attacks, CMAME, 2020.
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Reinforcement learning performance of the experimentalist/adversary game
(Drucker-Prager)

Training Iteration: 0 Training Iteration: 3
Game in Iteration: 0 Game in Iteration: 0
Protagonist Adversary Protagonist Adversary
300kPa \\\\ /// 500kpa 200kPa ~ _—""|500kPa
o s‘o\ /\ / \ ' /\\ / \\ ,cul.ss / \\ otslt;u i \
1 L Y A
ore A A A A A ANAN Az A e A
oos [ IIAAALLLLL LALALELLERE AL o= HEL LT os AL
Sl J s
seor [T (MITTTTes Nill ster.
Score: -0.447 Score: -1.000 Score: 0.292
z: I e /""‘“\::k:;: . T e 800
e I,‘ ! 600
g 100 { //' g E 400
Too 'y v v 200
Sfloo- | y / 8 5
o Gt S
—-200 .:’ el —-100
-0.03 —0.02 -0.01 0.00 0.00 0.02 0.01 0.00 0.02 7400().()[) 0.02 0.01

€11 €11 €11 €11

Initially, both agents are exploring the parametric space and attempt to
improve their estimated Q values through interacting with each others.
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Reinforcement learning performance of the experimentalist/adversary game
(Drucker Prager)

Training Iteration: 5 Training Iteration: 10
Game in Iteration: 0 Game in Iteration: 0
Protagonist Adversary Protagonist Adversary
- 400kPa ~ P a00kPa ~ /// 500kPa
e /e ST e
A Aot A A hde AMA A AL
1 M'g;fguahﬂﬁmﬁn "H‘Mg'?'f'fh L I s 1]
'th'ihswpﬂ I 'th'ihswpﬂ I NI o oo T
Score: 0.914 Score: 0.914 Score: -1.000

400
500-
300

200- 0

=
%
=100
E— -500
g
-100-
-1000-
-200-
1 | -300 1 | -1500 |
0.00 0.02 0.04 0.00 0.02 0.01 0.00 0.02 0.04 —0.01 —-0.02 0.00

€11 €11 €11 €11

As the game progress, both agents have generated sufficient knowledge such that the Q table
converges — the calibration agent tells you the strength of the models and where the Drucker-
Prager model scores the best (monotonic triaxial compression), while the adversarial agent found
that the DP model is not suitable to predict cyclic responses of DEM RVE.
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Reinforcement learning performance of the experimentalist/adversary game
(Bounding surface plasticity model)

0y -0y [kPa)
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(a) Iteration 0, Episode 24,
Defense Game Score: 0.162
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(e) Iteration 0, Episode 24,
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(c) Iteration 6, Episode 10,
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(d) Tteration 10, Episode 30,
Defense Game Score: 0.912
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(h) Iteration 10, Episode 30,
Defense Game Score: 0.912

Defense experimentalist + model calibrator
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(c) Iteration 6, Episode 10,
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(e) Iteration 0, Episode 24,

(f) Iteration 3, Episode 33,
Attack Game Score: 0.206

(g) Iteration 6, Episode 10,
Attack Game Score: 0.323

Attack Game Score: 0.295

Attack experimentalist
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—f

(d) Iteration 10, Episode 30,
Attack Game Score: -0.290
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\
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-0.04 -0.02 0.00
€1

(h) Iteration 10, Episode 30,
Attack Game Score: -0.290
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Reinforcement learning performance of the experimentalist/adversary game
(ML Traction- separation model)
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Defense experimentalist + model calibrator Attack experimentalist
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Evolution of the estimated policy value
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Fig. 21. Examples of paths (experiments) in the decision trees selected by the protagonist during the DRL training iterations for the
traction—separation model.
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Fig. 22. Examples of Q-values of all possible states in the experimental decision tree estimated by the protagonist’s policy/value network
fo during the DRL training iterations for the traction-separation model.



Results of competitions
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Log Perm. (mDarcy)

Related work 2: An accelerated hybrid data-driven/model-based approach for poroelasticity problems with multi-fidelity multi-physics

data (with Bahador Bahmani)

Some challenges in the data-driven model free approach:
*  Data hungry (less assumption higher need for data)
*  Scalability (online search over many data-points)

Observation:
*  Solid constitutive models: high fidelity
*  Fluid constitutive models: low fidelity
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Our contribution:

*  We introduce for the first time a coupled multiphysics
model-free formulation based on a non-parametric
data-driven algorithm for poroelasticity applications

*  Two hybrid formulations are developed in cases where
model (human-written or surrogate) performs
satisfactory. (Data efficient)

*  Weintroduce a simple projection that maps the
energy metric space onto the Euclidean metric space.
Using this treatment, high dimensional data can be
efficiently stored in tree data structures for fast
nearest neighbor search. (Scalable)

Exponentially faster model-free algorithm
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Future Work: Geometric learning for evolving connectivity graphs

» Stress evolutions under various loadings (grain scale)

lso-compress Pure shear Simple shear

Creating low-dimensional
representation graph to
represent microstructures
from voxel images

Unsupervised
classification of
graphs - graph

convolutions

|
r 1
energy

—

graph F
+ Regression of

energy
functional Y

Vlassis, Ma & Sun, CMAME 2020

(For convolutional neural network on voxel images, see
Frankel et al, CMS 2019)

C. Liu", W.C. Sun, ILS-MPM: an unbiased implicit level-set-based material point method for frictional particulate contact mechanics of deformable
particles, Computer Methods in Applied Mechanics and Engineering, , doi:10.1016/j.cma.2020.113168, 2020.
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Concluding Remarks:

We examine some potential applications of undirected
weighted graph and directed graph for computational
mechanics, in particular, we introduce ways to

1. Generalized the modeling process of elasto-
plasticity problems.

2. Write, validate and falsify a constitutive law
represented by directed graph via non-cooperative
game.

Directed Multi-graph
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