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Abstract An adaptively stabilized monolithic finite element model is proposed to simulate the fully cou-6

pled thermo-hydro-mechanical behavior of porous media undergoing large deformation. We first formulate7

a finite-deformation thermo-hydro-mechanics field theory for non-isothermal porous media. Projection8

based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due9

to the lack of the two-fold inf-sup condition of the equal-order finite element. To avoid volumetric locking10

due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in11

the formulation for non-isothermal porous solids. Finally, numerical examples are given to demonstrate12

the versatility and efficiency of this thermo-hydro-mechanical model.13

Keywords thermo-hydro-mechanics · stabilized procedure · multiphysics simulations · finite strain ·14

coupled diffusion-deformation process15

1 Introduction16

Thermo-hydro-mechanics (THM) is a branch of mechanics aimed to predict how deformable porous media17

behave, while heat transfer and fluid transport simultaneously occur in the pores filled by fluid and in18

the bulk of solid skeleton. Understanding these multiphysical responses is important for a wide spectrum19

of modern engineering applications, such as tissue scaffolding, geothermal heating, mineral exploration20

and mining, hydraulic fracture, and nuclear waste storage and management [19, 40]. Many of these21

engineering applications involve porous media undergoing substantial deformation with rapid changes on22

temperature and pore pressure.23

In the last three decades, a considerable progress has been made for deriving mathematical theories24

and implementing computer models to replicate the fully coupled thermo-hydro-mechanical processes.25

For instance, a monolithic small strain finite element code, FRACON, has been developed by Nguyen and26

Selvadurai [43]. In this code, the balance of linear momentum and mass are fully coupled, while thermal27

transport may affect the solid deformation and pore-fluid diffusion but not vice versa. A generalized28

trapezoidal rule is used to discretize temporal space. Li et al [37] introduces a co-rotational FEM formu-29

lation and incorporate plasticity into THM model to model the non-isothermal elastoplastic responses of30

porous media at large strain. In this formulation, stabilized one-point quadrature element is used to cut31

computational cost and avoid locking. In addition, logarithmic finite strain formulation has been derived32

and implemented in Karrech et al [33] to overcome the aberrant oscillations encountered in large simple33

shear. Recent work by Preisig and Prévost employed a fully coupled implicit THM simulator to compare34

the numerical solutions against the field data in a case study for carbon dioxide injection at In Salah, Al-35

geria [51]. Kolditz et al [35] introduces an open-source project OpenGeoSys, which takes advantage of an36
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object-orient framework and provide software engineering tools such as platform-independent compiling37

and automated benchmarking for developers.38

In addition to the monolithic finite element scheme, attempts have been made to sequentially couple39

multiphase flow and geomechanical simulators by establishing proper feedback and information exchange40

mechanisms. This strategy is often referred as operator-splitting method for which several aliases, such41

as fractional step, projection and pressure correction method, exist, as pointed out by Markert et al42

[39]. One such example is TOUGH-FLAC, which links flow simulator TOUGH2 with a small strain43

finite difference code FLAC [56]. This sequential coupling approach is an attractive alternative to the44

monolithic approach, as it is easier to implement and maintain flow and solid simulators separately. This45

sequential coupling approach is based on the operator-splitting technique, for which several aliases, such46

as fractional step, projection and pressure correction method, exist [39]. As noted by Markert et al [39],47

the idea behind the operator-splitting approach is to decouple the unfavorable volume constraint from48

the balance of linear momentum via an immediate step. The separation of pore pressure update from the49

solid mechanics solver therefore provides numerical stability. However, proper communication must be50

established to ensure the correctness and numerical stability of numerical solutions [31, 51, 58, 59, 72].51

The sequential coupling scheme used to link the fluid and solid simulators may have profound impact52

on the efficiency, stability and accuracy of the numerical solutions. If the fluid and solid simulators use53

different grids or meshes, then a proper data projection scheme is required to transfer information from54

Gauss points and nodes of the solid mesh to the fluid mesh and vice versa [25]. For large scale parallel55

simulations, the sequential couplings must be carefully designed to avoid causing bottleneck due to the56

difference in solver speed. This can be a significant problem if either the solid or fluid solver runs only57

in serial. Recent work by Kim et al [34] systematically compared fully implicit, fully explicit, semi-58

implicit monolithic and staggered schemes for unsaturated porous media under the isothermal condition.59

Numerical examples presented in Kim et al [34] show that the fully implicit monolithic scheme with either60

inf-sup stable or stabilized equal-order finite element is advantageous on resolving sharp pore pressure61

gradient, but is also less efficient than the semi-implicit counterparts.62

As noted in Borja [11], Mira et al [41], Preisig and Prévost [51], Simoni et al [64], Sun et al [72], Truty63

and Zimmermann [75], Wan [76], White and Borja [77], Zienkiewicz et al [80], numerical stability is often64

a major challenge for monolithic implicit schemes that solve poromechanics models. Due to the lack of65

inf-sup condition [5, 6, 10, 15], pore pressure and temperature fields may exhibit spurious oscillation66

patterns and/or checkerboard modes if the displacement, pore pressure and temperature are spanned by67

the same set of basis function. While these spurious oscillations are less severe at the drained/isothermal68

limit, they may intensify when a small time step is used or when materials are near undrained/adiabatic69

limit. From a mathematical viewpoint, these non-physical results are due to the kernel (null space) of70

the discrete gradient operator being non-trivial. This non-trivial kernel makes it possible to have certain71

spatially oscillating pore pressure and temperature fields that have no impact on the solid deformation72

in a numerical simulation. To cure the numerical instability due to the lack of inf-sup condition, previous73

researches have established a number of techniques that employ different basis functions to interpolate74

displacement and pore pressure and obtain stable solutions. For instance, Zienkiewicz and coworkers75

[80], and Borja [13] used Taylor-Hood finite element (quadratic basis functions for displacement and76

linear basis function for pore pressure) to satisfy inf-sup condition and maintain numerical stability77

for isothermal implicit hydromechanics problems. On the other hand, Jha and Juanes [31] have shown78

that linear displacement combined with pore fluid velocity in the lowest-order Raviart-Thomas space, and79

piecewise constant pore pressure may also lead to stable solutions for isothermal poromechanics problems.80

Nevertheless, inf-sup stable mixed finite element models require multiple meshes for displacement, pore81

pressure and/or fluid velocity. As a result, they require additional programming effort to pre- and post-82

processing data and maintain the more complex data structure.83

To avoid the complications of using multiple meshes for each solution field, an alternative is to use one84

single equal-order finite element mesh with stabilization procedures. Many stabilization procedures have85

been proven to be able to eliminate the spurious oscillation modes in implicit scheme without introducing86

extra diffusion for small strain isothermal poromechanics problems. For instance, White and Borja [77]87

employed a polynomial projection scheme originated from [22] to simulate slip weakening of a fault88

segment. This work is extended to the large deformation regime in Sun et al [72], where the stabilization89



Stabilized FEM for thermo-hydro-mechanics at finite strain 3

term is adaptively adjusted to avoid over-diffusion. Nevertheless, to the best of the authors’ knowledge,90

stabilization procedure for finite strain non-isothermal poromechanics has never been proposed.91

The objective of this research is to fill this knowledge gap by establishing large deformation thermo-92

hydro-mechanics theory, and develop the corresponding stabilized finite element model suitable for equal-93

order discretized displacement, pore pressure and temperature. The resultant system of equation is solved94

fully implicitly and monolithically to preserve the Mandel-Cryer effect when the multiphysical coupling95

is strong. The necessary condition for numerical stability for thermo-hydro-mechanics problem and the96

corresponding combined inf-sup condition are derived. A new stabilization procedure is established based97

on the combined inf-sup condition.98

The rest of the paper is organized as follows. We first establish the field theory for the thermo-hydro-99

mechanics problem in the geometrical nonlinear regime (Section 2). We then formulate the weak and100

Galerkin forms (Section 3.1-2), derive stabilization techniques (Section 3.3). Based on the mass lumping101

technique, we suggest stabilization parameters that are large enough to eliminate spurious oscillations102

without over-diffusing the solution (Section 3.4). Selected benchmark and engineering application prob-103

lems are simulated via the stabilized formulations (Section 4). Finally, concluding remarks are given in104

Section 5.105

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single con-106

traction of adjacent indices of two tensors (e.g. a · b = aibi or c · d = cijdjk ); the symbol ‘:’ denotes a107

double contraction of adjacent indices of tensor of rank two or higher ( e.g. C : εe = Cijklε
e
kl ); the symbol108

‘⊗’ denotes a juxtaposition of two vectors (e.g. a⊗b = aibj) or two symmetric second order tensors (e.g.109

(α ⊗ β) = αijβkl). As for sign conventions, we consider the direction of the tensile stress and dilative110

pressure as positive. Throughout this paper, we employ the standard notation Hl(Ω), || · ||l, (·, ·)l, l ≥ 0,111

for the Sobolev spaces of all functions having square integrable derivative up to order l on a simply112

connected bounded domain Ω in R3, the corresponding Sobolev norm and inner product respectively.113

2 Governing equations at Finite Strain114

In this section, we present the balance principles of mass, momentum and energy that define the strong115

form of the thermo-hydro-mechanics problem. Following the saturated porous media theory for isothermal116

solid-water mixture at finite strain [1, 12, 72], we describe the kinematics of the solid skeleton with the117

Lagrangian coordinates, while describing the motion of the pore fluid with the Eulerian coordinates with118

respect to the current configuration of the solid skeleton. In addition, the following assumptions are made.119

1. Mass exchanges between solid and fluid constituents do not occur.120

2. No phase transition occurs.121

3. Pores inside the solid skeleton are fully saturated by one fluid constituent.122

4. The pore-fluid advection is negligible.123

5. The pore-fluid flow is in laminar range.124

6. No chemical reactions take place among the fluid’s species.125

7. Inertial effects are negligible.126

8. The effective stress principle is valid.127

9. The temperature of solid and fluid constituents that occupy the same material point X ∈ B are128

identical.129

We consider both the fluid and solid constituents compressible and that both the pore fluid and the solid130

skeleton may exhibit mechanical and thermal deformation.131

2.1 Kinematics and Volume Fraction132

Consider a body of fully saturated porous medium B composed of both solid constituent and the pore133

fluid in the pore space, as shown in Figure 1. For a sufficiently large volume, the solid constituent and134

the pore fluid can be modeled as a homogenized continuum mixture. Here we apply the continuum135

approach in which the solid skeleton of the body B is described by a set of continuously distributed136
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points X ∈ B which occupied by a region within the Euclidean space R3. Notice that, except in the137

undrained limit, material points of pore fluid and solid skeleton do not share the same trajectory in the138

space-time continuum. As a result, materials at a point x of the current configuration may come from139

the reference configuration of the solid skeleton Xs and/or the pore fluid counterpartXf, i.e.,140

x = ϕα(Xα, t) α = s, f. (2.1)

Apparently, one may choose to formulate governing equations via both mappings, ϕs and ϕf. However,141

since most of the constitutive laws of the solid skeleton are formulated with respect to the configurations142

described by ϕs, we formulate the finite strain thermo-hydro-mechanics model with respect to the trajec-143

tory of the solid skeleton to simplify the derivations. The motion of the pore fluid is therefore taken into144

account by considering the relative motion between the pore fluid and the solid skeleton. For brevity, we145

drop the designation of the solid phase such that,146

x = ϕs(Xs, t) = ϕ(X, t). (2.2)

Therefore, the motion of the solid skeleton is described by an one-to-one mapping ϕ : B × [0, T ] → R3
147

which places a particle at the reference point X ∈ B to a position in R3 in a typical time internal T . Since
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ṗ

�
+

�
Kuu Bup

0 Kst
pp

� �
u
p

�
=

�
F ext

u

F ext
p

�
(4.8)

�
Kuu Bup

Bpu Kst
ppδt + Ktran

pp

� �
un+1

pn+1

�
=

�
F ext

u

F ext
p + Bpuun − Ktran

pp pn

�
(4.9)

Stabilization term

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(ph − 1

VΩ

�

Ω
phdΩ)] dΩ (4.10)

5 Deformation Mapping

x = ϕ(Xs, t) (5.1)

Xs = ϕ−1(x, t) (5.2)

x = ϕf (Xf , t) (5.3)

y = ϕf (Y f , t) (5.4)

6 Hydrogen transport

The balance of linear momentum reads

∇X · P (F , z, CT ) = 0 (6.1)

f(τ , z, CT ) = ||dev[τ ]|| −
�

2

3
[σY (CT ) + Kα ≤ 0 (6.2)

The transport equation reads
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Fig. 1 Trajectories of the solid and fluid constituents ϕs = ϕ and ϕf. The motion ϕ conserves all the mass of the solid
constituent, while the fluid may enter or leave the body of the solid constituent. Figure reproduced from Sun et al [72].

148

the solid-fluid mixture is homogenized as continuum, the density of a fully saturated porous medium can149

be written as,150

ρ = ρs + ρf = φsρs + φfρf, (2.3)

where ρα, α = s, f is mass of the α constituent divided by the current volume of the α constituent, while151

ρα is the partial density of the α constituent, defined as the mass of the α constituent divided by the152

volume of the mixture in the current configuration. φs is the volume fraction of the solid constituent in153

the current configuration. φf is the porosity of the porous medium in the current configuration, which154

is referred as Eulerian porosity in [19]. For fully saturated porous media, φs + φf = 1. Thus, the total155

current density also reads,156

ρ = (1− φf)ρs + φfρf, (2.4)

where the densities of the solid and fluid constituents both depend on the pore pressure and the temper-157

ature.158
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2.2 Balance of Linear Momentum159

Under the non-isothermal condition, solid skeleton may deform due to external mechanical loading,160

thermal expansion (or contraction) and interactions with pore-fluid. Assuming that the mixture theory161

is valid for porous media, we have,162

σ = σs + σf = φsσs + φfσf. (2.5)

where σs and σf are the intrinsic partial Cauchy stress defined in the volume of the solid grains V s and163

pore space V f respectively. The total Cauchy stress is the volume averaged stress defined in the current164

volume V = V s + V f. Neglecting the shear resistance of the pore fluid, intrinsic partial stress of fluid165

consistent σf is therefore isotropic and holds the following relation with the macroscopic pore pressure166

pf, i.e.,167

σf = φfσf = −φfpfI = −pfI. (2.6)

The partial stress of the solid constituent σs depends on the effective stress σ′ and the stress exerted on168

the solid grains by the pore fluid Kpf/KsI , i.e.,169

σs = σ′ +
K

Ks
pfI. (2.7)

This definition is from [45], which assumes that the non-uniform localization of stress at the grain scale,170

grain crushing, and damage are all insignificant to the skeleton (cf. [80] p.8-11). By substituting (2.6)171

and (2.7) into (2.5), the total Cauchy stress now reads,172

σ = σ′ −BpfI, (2.8)

where B is the Biot’s coefficient defined as [45],173

B = 1− K

Ks
. (2.9)

Typically, Biot’s coefficient B is close to unity for sand, but can be ranged from 0.5 to 0.8 for rocks or174

concrete. Notice that B in (2.8) have been defined in a number of different ways in the literature. For175

instance, Terzaghi and Rendulic defined B as a function of the effective area of solid grains [65, 73].176

For bio-materials and composites, Cowin and Doty [21] generalize the effective stress concept in [9] and177

introduce the effective stress coefficient tensor B, i.e.178

σ = σ′ − pfB. (2.10)

This definition of effective stress is not adopted in this work, but will be considered in future study. The179

balance of linear momentum therefore reads,180

∇x·σ + ρG+ hs + hf = 0, (2.11)

where G is the acceleration due to gravity. hs and hf are the interactive body forces per unit refer-181

ence volume exerted on their corresponding phases due to drag, lift, virtual mass effect, history effects182

and the relative spinning (Magnus effect) which balance out internally, i.e., hs + hf = 0 [54]. In the183

total Lagrangian formulation, balance of linear momentum in Equation (2.11) is rewritten in reference184

configuration via the Piola transformation [29], i.e.,185

∇X ·P + JρG = 0, (2.12)

where P denotes the total first Piola-Kirchhoff stress and J = det(F ) is the determinant of the defor-186

mation gradient of the solid skeleton F . Similar to the total Cauchy stress, the total first Piola-Kirchhoff187

stress can be partitioned into two parts, the effective first Piola-Kirchhoff stress P ′ and the pull-back188

of the pore fluid contribution JBpfF−T . The effective first Piola-Kirchhoff stress P ′ is the amount of189

stress carried by the solid skeleton. For solid skeleton exhibiting elasto-plastic responses, the effective190
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first Piola-Kirchhoff stress can be determined from the deformation gradient and the internal variable(s)191

z of the solid skeleton.192

P (F , z, pf , θ) = P ′(F , z, θ)− JBpfF−T . (2.13)

Under the non-isothermal condition, the multiplicative decomposition of the deformation gradient can193

be written as [29],194

F =
∂ϕ(X, t)

∂X
= FM · F θ ; F θ =

∂ϕθ(X, t)

∂X
;FM =

∂ϕM (Xθ, t)

∂Xθ
, (2.14)

where F θ and FM are the pure thermal and mechanical splits of the deformation gradient.

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ�=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-
values computed are never exactly zero. Thus, theoretical specking, computer simulation
involving material approaching diffuse bifurcation should still be able to converge to unique
solution. The finite precision of arithmetic operation also introduces similar impact on the
fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in
computer unless symbolic operation is carried out.

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ�=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

∈ B ∈ ϕθ(B) ∈ ϕM (ϕθ(B)) ∈ ϕp(ϕθ(B))

(8.23)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ�=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

∈ B ∈ ϕθ(B) ∈ ϕM (ϕθ(B)) ∈ ϕp(ϕθ(B))

(8.23)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ�=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

∈ B ∈ ϕθ(B) ∈ ϕM (ϕθ(B)) ∈ ϕp(ϕθ(B))

(8.23)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

15

W.C. Sun

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt (8.14)

Sk = αT k + (1 − α) �Tk − αV k − (1 − α)�Vk + Ck (8.15)

DϕS = 0 (8.16)

D �ϕS = 0 (8.17)

DφS = 0 (8.18)

ϕ (8.19)

�ϕ (8.20)

X Xθ Xσ�=0 x (8.21)

ϕθ ϕp ϕe ϕM ϕ (8.22)

∈ B ∈ ϕθ(B) x ∈ ϕM (ϕθ(B)) ∈ ϕp(ϕθ(B))

(8.23)

8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

15

Fig. 2 Multiplicative decomposition of the thermohydromechanics deformation.

195

As shown in Figure 2, the mechanical split FM of the deformation gradient can be further decomposed196

into the elastic and plastic parts such that,197

FM = F · F−1
θ = F e · F p ; F p =

∂ϕp(Xθ, t)

∂Xθ
; F e =

∂ϕe(Xσ′=0, t)

∂Xσ′=0
, (2.15)

where ϕθ(B) is the intermediate thermal effective-stress-free configuration caused by thermal expansion198

or contraction. Similarly, ϕp(ϕθ(B)) is the intermediate effective-stress-free configuration, which can be199

obtained by deforming the current configuration via ϕe−1. Notice that we do not consider the possibility200

of having the pore pressure split for the deformation gradient of the solid skeleton. In addition, we assume201

that the thermal expansion is isotropic. To replicate the thermal effect accurately, anisotropy of thermal202

effect must be considered for composite or reinforced materials. Nevertheless, anisotropy of thermal203

conductivity is often neglected in the literature, partly due to the lack of data to characterize detailed204

tensorial thermal conductivity in field and experimental settings. As a result, F θ can be characterized205

by the thermal expansion coefficient αsk(θ), i.e.,206

F θ = exp[

∫ θ

θ̂

αsk(θ̂)dθ̂]I . (2.16)

If the thermal expansion coefficient is constant, then we have,207

F θ = exp[αsk(θ − θo)]I ; Jθ = exp[3αsk(θ − θo)], (2.17)
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where θo is the reference temperature at which there is no thermal-induced deformation. Notice that208

linearizing the thermal expansion defined in (2.17) leads to the classical thermal strain εv = log Jθ =209

3αsk(θ − θo). Recall that the configuration ϕθ(B) is stress free, and the thermal-induced deformation210

gradient is isotropic, thus, F = F θFM = FMF θ. As a result, Equation (2.13) can be rewritten as,211

P (FM , z, p
f ) = P ′(FM , z)− JBpfF−T , (2.18)

in which the thermal expansion alone does not induce any change in the effective stress of the solid212

skeleton.213

2.3 Balance of Fluid Content214

The three-dimensional balance of fluid content equation for fully saturated porous media was first derived215

by Biot [9]. Rice and Cleary [55] extended this study by taking account of the compressiblity of fluid216

and solid constituents and provided analytical solution for pressuized cylindrical and spherical cavity217

under the isothermal condition. This version of balance of fluid content was then further generalized by218

McTigue [40] which takes account of the thermal coupling effect of fluid-saturated porous media in the219

geometrical linear regime. In this study, our new contribution is to provide the derivations for the balance220

of fluid mass in the geometrical nonlinear regime. In particular, we adopt the notations of Eulerian and221

Lagrangian porosities introduced by Coussy [19]. Using this as a starting point, we derive the balance of222

fluid content equation of the non-isothermal porous media in reference configuration.223

Let us first define the Lagrangian fluid content M f : B × [0, T ] → R+ as the fluid mass per unit224

reference volume. The fluid content is therefore a function of the porosity and the fluid density, i.e.,225

M f = Jρf = Jφfρf = Φfρf, (2.19)

where Φf(X, t) = J(X, t)φf(ϕ(X, t), t) is the Lagrangian porosity, the ratio between current void volume226

to the initial total volume (cf. [19], p.5). In the current configuration, the balance of fluid mass content227

reads, i.e.,228

D

Dt

∫

ϕ(B)

φfρfdv = −
∫

∂ϕ(B)

w · n da. (2.20)

Applying Reynold’s transport theorem and Gauss theorem, we obtain the corresponding local fluid con-229

tent continuity equation in the current configuration,230

DJφfρf
Dt

+ J ∇x·w = 0 , (2.21)

where Dφfρf/Dt is the material time derivative of the current fluid density that reads,231

DJφfρf
Dt

=
∂Jφfρf
∂t

+ φfρfJ̇ , (2.22)

where ˙(·) = D(·)/Dt. In (2.20) and (2.21), w is the relative pore-fluid mass flux in the deforming solid232

skeleton body. Assuming that the pore-fluid flow is Darcian, then the relative pore-fluid mass flux is233

related to both the gradient of the pore pressure and the temperature under non-isothermal condition,234

i.e.,235

w = ρfk ·
[
−∇x pf + ρfG

]
− ρfsT ∇x θ, (2.23)

where k is the permeability tensor divided by the viscosity; ST is the Soret coefficient. In particular, the236

latter term sT ∇x θ represents a phenomenon analogous to the Ludwig-Soret effect (the flux induced by237

the gradient of temperature) [8, 40, 50].238

The balance of mass content in the Lagrangian configuration can be obtained from (2.21) via Piola239

transformation, i.e.,240

DM f

Dt
= −∇X ·W . (2.24)
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The Lagrangian relative mass flux W can be obtained via the Piola identity, i.e.241

W = JF−1 ·w. (2.25)

Furthermore, let us assume that the inertial force is negligible, af = 0. After a pull-back operation, the242

Lagrangian mass flux reads,243

W = ρfQf = ρfK · (−∇X pf + ρfF
T ·G)− ρfST ∇X θ , (2.26)

where both the permeability tensor and Soret coefficient tensor are both positive semi-definite, i.e.,244

K = JF−1 · k · F -T ; ST = JsTC
−1 , (2.27)

where C = FT · F is the right Cauchy-Green tensor. Next, we consider the local rate of change of the245

fluid content M f in the left hand side of (2.24). The material time derivative of the fluid mass content246

can be partitioned by applying the chain rule on (2.19),247

Ṁ f = Φfρ̇f + ρfΦ̇f. (2.28)

To complete the formulation, we need to re-express (2.28) in terms of the two fields ϕ and pf. As a result,248

we assume that the pore fluid density only depends on temperature θ and pore pressure pf. Hence, we249

have250

ρ̇f(θ, p
f) =

∂ρf
∂pf

∣∣∣
θ
ṗf +

∂ρf
∂θ

∣∣∣
pf
θ̇. (2.29)

In the above expression, ∂ρf/∂pf|θ represents the change of the density due to pore pressure rise/drop at251

a fixed temperature, while ∂ρf/∂θ|pf represents the change of density due to a temperature rise/drop at252

a fixed pore pressure. Assuming that the bulk modulus Kf and thermal expansion coefficient αf of the253

pore fluid remains constant, we have,254

ρf(θ, p
f) = ρfo exp

(
pf − pfo
Kf

− 3αf(θ − θo)
)
. (2.30)

Hence, ∂ρf/∂pf|θ and ∂ρf/∂θ|fp can be written as,255

∂ρf
∂pf

∣∣∣∣∣
θ

=
ρf
Kf

;
∂ρf
∂θ

∣∣∣∣∣
pf

= −3ρfαf. (2.31)

Meanwhile, the constitutive relation of the Lagrangian porosity Φf is a function of ϕ, pf and θ. For256

example, one may generalize Athy’s exponential porosity-pressure relation [2] and express the Lagrangian257

porosity as shown in (2.32).258

Φf = Φf
o exp

(
B log J +

B − Φf

Ks
(pf − pfo)− 3(J − Φf)αs(θ − θo)

)
, (2.32)

where log J = log(detF ) = tr ε and ε is the Eulerian logarithm strain tensor and αs is the thermal expan-259

sion coefficient of the solid constituent. This version of porosity constitutive law features a multiplicative260

decomposition which reads,261

Φf = JϕJp
f

JθΦf
o , (2.33)

where,262

Jϕ = exp(B log J) ; Jp
f

= exp(
B − Φf

Ks
(pf − pfo)) ; Jθ = exp(−3(J − Φf)αs(θ − θo)). (2.34)

The advantage of a constitutive law like (2.32) is that it will not predict an unphysical negative porosity263

even under extreme loading conditions. However, as argued by Armero in [1] and subsequently in [17, 33],264

it is more consistent with the nature of the fluid content, a scalar field, to be modeled by additive265
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decompositions in both infinitesimal [19] and finite deformation regimes [1, 17]. Since for porous media266

with incompressible fluid constituents, Ṁ f = ρfΦ̇
f , an additive decomposition of fluid content implies267

that the Lagrangian porosity should also be defined in an additive decomposition. As a result, we employ268

a linear approximation of (2.32), i.e.,269

Φf − Φf
o ≈ log Jϕ + log Jp

f

+ log Jθ = B log J +
B − Φf

Ks
(pf − pfo)− 3(J − Φf)αs(θ − θo). (2.35)

Equation (2.35) is identical to the Lagrangian porosity defined in [19, 20] if the thermal coefficient term270

in [19, 20] αφ = Φsαs = (J − Φf )αs. Taking the material time derivative of (2.35), the material time271

derivative of Lagrangian porosity now reads,272

Φ̇f =
∂Φf

∂J

∣∣∣
(pf,θ)

J̇ +
∂Φf

∂pf

∣∣∣
(ϕ,θ)

ṗf +
∂Φf

∂θ

∣∣∣
(ϕ,pf)

θ̇. (2.36)

Assuming that B and Ks remain constant and taking the material time derivative of (2.35) leads to,273

(
1 +

pf − pfo
Ks

− 3αs(θ − θo)
)
Φ̇f =

B

J
J̇ − 3αs(θ − θo)J̇ +

B − Φf

Ks
ṗf − 3(J − Φf)αsθ̇. (2.37)

For simplicity, let |pf| << Ks and |αs(θ−θo)| << 1. Substituting (2.29), (2.31) and (2.37) into (2.28) and274

working through algebra, we obtain the expression of the material time derivative of the fluid content275

Ṁ f which reads,276

Ṁ f = ρf

(
(B
J
− 3αs(θ − θo)

)
J̇ +

1

M
ṗf − 3αmθ̇

)
, (2.38)

where M is the Biot’s modulus as defined in [19, 45]. αm is the thermal expansion coefficient of the277

mixture. In infinitesimal range where Φf ≈ φf, this definition is identical to the thermal expansion278

coefficient in [51], i.e.,279

M =
KsKf

Kf (B − Φf) +KsΦf
; αm = Φsαs + Φfαf = (J − Φf)αs + Φfαf. (2.39)

Combining (2.26) and (2.38), we obtain the strong form of the balance of fluid content equation,280

(B
J
− 3αs(θ − θo)

)
J̇ +

1

M
ṗf − 3αmθ̇ +

1

ρf
∇X ·W = 0. (2.40)

Notice that if both constituents are incompressible, then B = 1, 1/M = 0 and ∇x ρf = 0. Applying the281

Piola transform and assuming isothermal condition, (2.40) reduces to the form identical to that seen in282

[12],283

∇x· v +∇x· q = 0, (2.41)

where q = (1/ρf )w. In summary, the balance law expressed in (2.40) captures the influence of the skeleton284

deformation and heat transfer on fluid transport in the following ways:285

1. compression or expansion of fluid induced by solid skeleton deformation.286

2. shrinkage or expansion of the pore space that leads to the change of the change of specific storage.287

3. expansion or shrinkage of solid and fluid constituents due to temperature changes.288

4. the Soret effect, i.e., the thermo-induced diffusion of pore fluid.289

5. the geometrical nonlinear effect due to the deformation of solid skeleton.290

Remark 1 One important observation of the derivation shown in (2.32)-(2.40) is that both the balance291

of energy and the balance of fluid content equations depend strongly on the porosity evolution law in the292

geometrically nonlinear regime.293
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2.4 Balance of Energy294

In the vast body of literature on thermo-hydro-mechanics, the balance of energy for thermohydromechan-295

ics problems differs significantly due to the variety of underlying assumptions. For the sake of simplifi-296

cation, some THM models assume that both the skeleton deformation and pore-flow diffusion processes297

impose negligible influences on the heat transfer process and thus lead to a decoupled heat transfer298

equation in the infinitesimal regime [40, 43, 60, 61], i.e.,299

∇x· kθ∇x θ = ρCpθ̇, (2.42)

where kθ and Cp are the volume averaged thermal conductivity and heat capacity of the fluid-solid mix-300

ture. Similar assumptions are made in several other small strain thermohydromechanics codes reported301

in international co-operative research project DECOVALEX [32] and in the open source simulation code302

OpenGeoSys [35].303
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cF θ̇ = [Dmech −Hθ] + [−J ∇x· qθ +
φfcF f

ρf
Jw · ∇x θ +Rθ], (2.43)

where cF is the specific heat capacity per unit volume of the porous media at constant deformation313

[29]. For the fully saturated, two-phase porous media, the specific heat capacity of the solid-fluid mixture314

can be obtained by volume averaging the specific heat capacities of the solid and fluid constituents, i.e.,315

cF = (J − Φs)cF s + ΦfcF f = (J − Φs)ρfocs + Φfρsocf , (2.44)
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mass) of the fluid and solid constituents. Dmech denotes the contribution to the dissipation due to pure317
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into the reference configuration via the Piola transformation yields,326

cF θ̇ = [Dmech −Hθ] + [−∇X ·Qθ +
ΦfcF f

ρf
W · F−T ∇X θ +Rθ], (2.45)

where Qθ is the Piola-Kirchhoff heat flux. Assuming that both the solid and fluid constituents obey327

Fourier’s law, the Cauchy heat flux is often written as the dot product of the volume averaged heat328

conductivity tensor and the gradient of temperature [52], i.e.,329
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and connectivity, which can be obtained from three dimensional tomographic images [68, 69] or directly333

from experiments. However, since micro-structural attributes of pore space is not always available, we334

adopt an alternative homogenization approach where equivalent inclusion method is used to determine335

effective heat conductivity tensor of the two-phase materials [28]. Assuming that the pore fluid as the bulk336

material and the solid grains as spherical inclusions, the effective thermal conductivity may be estimated337

via Eshelby equivalent inclusion method reads,338

kθ =

(
kfθ +

(1− φf)(ksθ − kfθ)kfθ
(ksθ − kfθ)φf + kfθ

)
I =

(
kfθ +

(J − Φf)(ksθ − kfθ)kfθ
(ksθ − kfθ)Φf + Jkfθ

)
I, (2.47)

where ksθ and kfθ are the isotropic thermal conductivity coefficient of the solid and the fluid consitituents.339

Applying the Piola transformation and using the relations Φs + Φf = J and φs + φf = 1, (2.46) can be340

rewritten in reference configuration, i.e.,341

J−1FQθ = −kθF−T ∇X θ . (2.48)

Hence, the Piola-Kirchhoff heat flux Qθ corresponding to (2.46) reads,342

Qθ = −Kθ∇X θ , (2.49)

where Kθ is the pull-back thermal conductivity tensor, i.e.,343

Kθ = JF−1 · kθ · F−T . (2.50)

2.4.1 Simplified Heat Transfer Equation in Geometrically Nonlinear Regime344

If both the mechanical dissipation and the Gough-Joule coupling effect are neglected, then we recover345

the finite deformation version of the heat transfer equation in [35, 36, 43, 60, 61], which reads,346

cF θ̇ −∇X ·Kθ∇X θ +
ΦfcF f

ρf
W · F−T · ∇X θ −Rθ = 0; . (2.51)

Notice that the thermal diffusion process is fully coupled with the skeleton deformation in the geometrical347

non-linear regime, even if the mechanical dissipation and Gough-Joule coupling effect are both neglected.348

This coupling effect is captured by the porosity changes and volumetric deformation that lead to changes349

in the effective specific heat CF , the pull-back conductivity tensor and the convection term. If the both350

structural heat and dissipation mechanisms exhibit little influence on the thermal diffusion process of the351

porous medium, the (2.51) is sufficient. However, for more general cases, particularly biological tissues352

or other rubber-like materials, both the structural heat and dissipation mechanism must be taken into353

account properly.354

2.4.2 Structural Heating and the Gough-Joule Coupling Effect355

Giving the fact that the actual expressions of both structural heating and dissipation vary significantly for356

different material models, we consider Equation (2.45) a general statement for the energy conservation357

law. However, we may introduce additional assumptions to express the balance of energy in a more358

explicit form. For instance, we may assume that the structural heating contains no latent plastic terms359

and this is identical with the thermoelastic heating [62]. To further particularize the problem, assume360

that the non-dissipative (latent) structural heating or cooling Hθ are the sum of the power contributed361

by the solid skeleton and the pore fluid, i.e.,362

Hθ = Hs
θ +Hf

θ, (2.52)

where power contributed by the volumetric deformation of the solid skeleton reads [62],363

Hs
θ = −θ ∂

∂θ
P ′ : Ḟ = −θ ∂2

∂J∂θ
3αskK log J(θ − θo)J̇ = −3Kαskθ

J̇

J
. (2.53)
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Following the derivation in Coussy [19], the pore-fluid contribution reads,364

Hf
θ = −θ ∂

∂θ
3αm(θ − θo)ṗf = −3αmθṗf. (2.54)

Substituting (2.53) and (2.54) into (2.45) and neglect the mechanical dissipation, we obtain the energy365

balance equation that takes account of the Gough-Joule coupling effect,366

cF θ̇ − 3Kαskθ
J̇

J
− 3αmθṗf −∇X ·Kθ∇X θ +

ΦfcF f

ρf
W · F−T · ∇X θ −Rθ = 0. (2.55)

3 Stabilized Variational Formulation367

In this section, we consider the stabilized variational form for the equal-order displacement-pressure-368

temperature finite element model, with assumed deformation gradient that prevents volumetric locking.369

We first define the standard weak form of the poromechanics problem based on the balance law derived370

in Section 2. By applying a multiplicative split, we introduce the assumed deformation gradient for the371

thermo-hydro-mechanics problem. To prevent spurious modes due to the usage of equal-order interpo-372

lations, we introduce a stabilization mechanism into the weighted-residual statement of the mass and373

energy balance equations. A simple scheme for choosing the stabilization parameters is also presented.374

3.1 Galerkin Form375

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We376

first specify the appropriate boundary and initial conditions. Following the standard line, we consider a377

domain B whose boundary ∂B is the direct sum of the Dirichlet and von Neumann boundaries, i.e.,378

∂B = ∂Bu ∪ ∂Bt = ∂Bpf ∪ ∂BQf
= ∂Bθ ∪ ∂BQθ , (3.1)

379

∅ = ∂Bu ∩ ∂Bt = ∂Bpf ∩ ∂BQf
= ∂Bθ ∩ ∂BQθ , (3.2)

where ∂Bu is the solid displacement boundary; ∂Bt is the solid traction boundary; ∂Bp is the pore380

pressure boundary; ∂BQf
is the pore-fluid flux; ∂Bθ is the temperature boundary; ∂BQf

is the heat flux;381

boundary, as illustrated in Figure 3.
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3 Stabilized Variational Formulation

In this section, we consider the stabilized variational form required for the equal-order displacement-
pressure-temperature finite element model with assumed deformation gradient. We first define the stan-
dard weak form of the poromechanics problem based on the balance law derived in Section 2. By applying
a multiplicative split, we introduce the assumed deformation gradient suitable for the thermohydrome-
chanics problem. To prevent spurious modes due to the usage of equal-order interpolations, we introduce
a stabilization mechanism into the weighted-residual statement of the mass and energy balance equations.
A simple scheme for choosing the stabilization parameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We
first specify the appropriate boundary and initial conditions. Following the standard line, we consider a
domain B whose boundary ∂B is the direct sum of the Dirichlet and Von Neumann boundaries, i.e.,

∂B = ∂Bu ∪ ∂Bt = ∂Bp ∪ ∂BQf
= ∂Bθ ∪ ∂BQθ

(55)

∅ = ∂Bu ∩ ∂Bt = ∂Bp ∩ ∂Bqf
= ∂Bθ ∩ ∂Bqθ

(56)

where ∂Bu is the solid displacement boundary; ∂Bt is the solid traction boundary; ∂Bp is the pore
pressure boundary; ∂Bqf

is the pore-fluid flux boundary.
The boundary conditions are prescribed as

u = u on ∂Bu (57)

N · P = t on ∂Bt (58)

pf = p on ∂Bp (59)

−N · Q = Q on ∂BQ (60)

θ = θ on ∂Bθ (61)

−N · Qθ = Qθ on ∂BQθ
(62)

In addition, we consider the trial space for the weak form which reads,

Vu = {u : B → R3|u ∈ [H1(B)]3, u|∂Bu
= u} (63)

Vp = {pf : B → R|pf ∈ H1(B), pf |∂Bp
= p} (64)

where H1 denotes the Sobolev space of degree one. The admissible variations of displacement η and pore
pressure ψ therefore read,

Vη = {η : B → R3|η ∈ [H1(B)]3,η|∂Bη
= 0} (65)

Vψ = {ψ : B → R|ψ ∈ H1(B), ψ|∂Bp
= 0} (66)

For brevity, the spatial argument X ∈ B is not explicitly written. Moreover, the material time derivative
of function A is simply denoted as Ȧ. The weighted-residual statement of the balance of mass and linear
momentum reads: find u ∈ Vu and pf ∈ Vp such that for all η ∈ Vη| and ψ ∈ Vψ,

G(u, pf ,η) = H(u, pf , ψ) = 0 (67)

where G : Vu × Vp × Vη → R and H : Vu × Vp × Vψ → R are defined as,

G(u, pf ,η) =

�

B

∇X ·η : P − J(ρf + ρs)η · g dV

−
�

∂Bt

η · t dΓ (68)
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�

B
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−
�

∂Bt
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Fig. 3 Domain and the corresponding boundaries of the thermo-hydro-mechanics problem. Figure reproduced from [38].
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In summary, Dirichlet boundary conditions for the thermo-hydro-mechanics problem read,383

u = u on ∂Bu,

pf = p on ∂Bp, (3.3)

θ = θ on ∂Bθ.

Meanwhile, the von Neumann boundary conditions that describe the traction and fluxes read,384

N · P = t on ∂Bt,

−N ·Qf = Qf on ∂BQf
, (3.4)

−N ·Qθ = Qθ on ∂BQθ .

In addition, the spaces for the trial displacement, pore pressure and temperature read,385

V u = {u : B→ R3|u ∈ [H1(B)]3,u|∂Bu = u},
Vp = {pf : B→ R|pf ∈ L2(B), pf|∂B

pf
= pf}, (3.5)

Vθ = {θ : B→ R|θ ∈ L2(B), θ|∂Bθ = θ},
where H1 denotes the Sobolev space of degree one. The admissible variations of displacement η, pore386

pressure ψ and temperature θ therefore read,387

V η = {η : B→ R3|η ∈ [H1(B)]3,η|∂Bη = 0},
Vψ = {ψ : B→ R|ψ ∈ L2(B), ψ|∂B

pf
= 0}, (3.6)

Vω = {ω : B→ R|ψ ∈ L2(B), ω|∂Bθ = 0}.
For brevity, the spatial argument X ∈ B is not explicitly written. The weighted-residual statement of388

the balance of linear momentum, fluid content and energy is as follows.389

Find u ∈ V u, pf ∈ Vpf and θ ∈ Vθ such that for all η ∈ Vη and ψ ∈ Vψ such that390

G(u, pf, θ,η) = H(u, pf, θ, ψ) = L(u, pf, θ, ω) = 0, (3.7)

where G : V u × Vpf × Vθ × Vη → R is the weak statement of the balance of linear momentum i.e.,391

G(u, pf, θ,η) =

∫

B

∇X ·η : P − J(ρf + ρs)η · g dV

−
∫

∂Bt

η · t dΓ, (3.8)

H : V u × Vpf × Vθ × Vψ → R is the weak statement of the balance of fluid content, i.e.,392

H(u, pf, θ, ψ) =

∫

B

ψ
(B
J
− 3αs(θ − θo)

)
J̇ dV

+

∫

B

ψ
1

M
ṗf − 3ψαmθ̇ dV

−
∫

B

∇X ψ · 1

ρf
W dV

−
∫

∂BQ

ψQf dΓ, (3.9)

and L : V u × Vpf × Vθ × Vω → R is the weak statement of the balance of energy, i.e.,393

L(u, pf, θ, ω) =

∫

B

ω
(
cF θ̇ − 3αskKθ

J̇

J
− 3αmθṗf

)
dV

+

∫

B

∇X ωKθ∇X θ̇ + ω
Φfcf
ρf

W · F−T · ∇X θ − ωRθ dV

−
∫

∂BQ

ωQθ dΓ. (3.10)
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3.2 Temporal discretization394

Due to the transient nature of the thermo-hydro-mechanics problem, the weak statement must be dis-395

cretized in time. Typically, this temporal discretization is often conducted after the spatial discretization396

[53]. Here we use a different approach in which temporal discretization will be considered before applying397

spatial discretization. This treatment is due to the usage of the template-based generic programming398

based package called Phalanx [47], which enables a component-based implementation and thus signifi-399

cantly simplify the programming efforts. This implementation method will be discussed in Section 4). As400

a result, we first derive an equivalent static problem [53] by discretizing the temporal domain before in-401

troducing basis functions for the spatial discretization. Here we use finite difference approach in temporal402

domain such that the pore pressure and temperature at time step n+ 1 can be written as403

pfn+1 ≈ pfn + (1− β̂)∆t ṗfn + β̂ṗfn+1, (3.11)
404

θn+1 ≈ θn + (1− β̂)∆t θ̇n + β̂θ̇n+1. (3.12)

To simplify the formulation, we use the unconditionally stable fully backward Euler scheme by setting405

β̂ = 1. However, directly applying Euler scheme to discretize the Jacobian J in time will lead to erroneous406

results that make negative Jacobian possible. As a result, we take advantage of the following identity407

obtained via the chain rule,408

D(log J)

Dt
=
D log J

DJ

DJ

Dt
=
J̇

J
, (3.13)

where J ∈ R+, log J ∈ R. Hence, we may obtain the material derivative of the Jacobian J by discretizing409

log J in time, i.e.,410

J−1
n+1J̇n+1 =

D

Dt
(log Jn+1) ≈ log Jn+1 − log Jn

∆t
. (3.14)

Substituting (3.11), (3.12) and (3.14) into weighted-residual form (3.7), the time discretized weighted411

residual form reads,412

Ĝ(un+1, p
f
n+1, θn+1,η) = Ĥ(un+1, p

f
n+1, θn+1, ψ) = L̂(un+1, p

f
n+1, θn+1, ω) = 0, (3.15)

where the discrete weak form of the balance of linear momentum now reads,413

Ĝ(un+1, p
f
n+1, θn+1,η) =

∫

B

∇X ·η : Pn+1 dV

−
∫

B

Jn+1(ρfn+1 + ρsn+1)η · g dV

−
∫

∂Bt

η · tn+1 dΓ. (3.16)

Similarly, the discrete weak form of the balance of fluid content and balance of energy can be written as,414

Ĥ(un+1, p
f
n+1, θn+1, ψ) =

∫

B

ψ
(
B − 3αs(θn+1 − θo)Jn+1

) log Jn+1 − log Jn
∆t

dV

+

∫

B

ψ
( 1

Mn+1

pfn+1 − pfn
∆t

− 3αm
n+1

θn+1 − θn
∆t

)
dV

−
∫

B

∇X ψ · 1

ρfn+1
Wn+1 dV−

∫

∂BQf

ψQfn+1 dΓ. (3.17)

415

L̂(un+1, p
f
n+1, θn+1, ω) =

∫

B

ω
(
cFn+1

θn+1 − θn
∆t

− 3Kαskθn+1
log Jn+1 − log Jn

∆t

)
dV

−
∫

B

ω
(

3αmθn+1
pfn+1 − pfn

∆t
+
Φf
n+1cf
ρfn+1

Wn+1 · F−Tn+1 · ∇X θn+1

)
dV

−
∫

B

∇X ω ·Qθn+1 dV−
∫

∂BQθ

ψQθn+1 dΓ. (3.18)
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Consider the case where the testing functions and the interpolated displacement, pore pressure and
temperature are spanned by the same basis functions. In that case, the following approximation holds,

u ≈ uh =
n∑

a=1

Naua ; pf ≈ pfh =
n∑

a=1

Nap
f
a ; θ ≈ θh =

n∑

a=1

Naθa ,

η ≈ ηh =
n∑

a=1

Naηa ; ψ ≈ ψh =
n∑

a=1

Naψa ; ω ≈ ωh =
n∑

a=1

Naωa ,

(3.19)

where ua, pfa and θa are the nodal values of displacement, pore pressure and temperature. ηa, ψa and416

ωa are nodal values of the corresponding test functions. The resultant finite dimensional spaces for the417

interpolated displacement, pore pressure and temperature are denoted as V h
u, V hp and V hθ respectively.418

Similarly, we denote the finite dimensional space of the corresponding testing functions as V h
η, V hψ and419

V hω . The integer n is the number of node per element. By substituting (3.19) into (3.15), we obtain the420

equal-order Galerkin form of the thermo-hydro-mechanical problem.421

3.3 Assumed Deformation Gradient for Volumetric Locking422

In this section, we derive an assumed deformation gradient for the thermo-hydro-mechanics problem to423

circumvent the volumetric locking numerical deficiency. Recall that the kinematic split of the deformation424

gradient F is formulated as,425

F = F vol · F iso, (3.20)

where,426

F vol = J1/3I ; F iso = J−1/3F . (3.21)

Previously, the assumed deformation gradient method is often used to avoid the over-constraint asso-427

ciated with equal-order interpolations of the volumetric and isochoric parts of the deformation gradient428

[42, 63, 66, 72, 78]. The key to avoid overconstraint is to replace the interpolated volumetric deformation429

field J = detF with a reduced order volumetric field J such that fewer volumetric constraints occur when430

incompressibility limit is approached. The resultant assumed deformation gradient is therefore composed431

of the modified volumetric deformation field and the original interpolated isochoric deformation gradi-432

ent. In other words, the interpolated volumetric split F vol = J1/3I is replaced by an modified definition433

F vol = J̄1/3I such that,434

F = J̄1/3F iso = J̄1/3J−1/3F . (3.22)

While the relaxation provided by the modification of deformation gradient definition is able to cure435

the locking issue, the usage of non-standard deformation gradient may lead to numerical instability436

as exhibited in Broccardo et al [16], Castellazzi and Krysl [18]. Moran et al [42] suggested replacing437

the assumed deformation gradient F with a linear interpolation between the original and the assumed438

deformation gradient, i.e., F̃ = αF + (1−α)F . where α is a stabilization parameter in which α = 0 leads439

to the pure F-bar formulation and α = 1 leads to the standard formulation. The idea is to introduce440

stiffness to spurious zero-energy mode by increasing the magnitude of α whenever the numerical instability441

is encountered.442

However, as deformation gradient belongs to multiplicative group, linear interpolation may lead to443

significant error. For instance, linearly interpolating rigid body rotations may lead to tensor not belonging444

to SO(3) group. To cure locking without comprising stability, we introduce a simple combined/standard445

F-bar element by recourse to exponential/logarithmic mapping for the thermo-hydro-mechanics problem446

in which the modified deformation gradient reads ,447

F̃ = J̃1/3F iso = J̃1/3J−1/3F , (3.23)

where J̃ is the modified volumetric split of the deformation gradient, i.e.,448

J̃ = exp
(1− β

VBe

∫

Be
log J dV + β log J

)
, (3.24)
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where β ∈ [0, 1] is a weighing parameter that partitions the standard and assumed deformation gradient.449

Augmented with the (2.17) and assumed that the thermal expansion coefficient αsk is constant, the450

logarithmic volumetric strain log J reads,451

log J = log Je + log Jp + 3αsk(θ − θo). (3.25)

The mechanical contribution of the assumed deformation gradient therefore reads,452

F̃M = J̃
1/3
M F iso , (3.26)

where,453

J̃M = exp
(

log J̃ − 3
(1− β

VBe

∫

Be
αsk

(
θ − θo

)
dV + βαsk(θ − θo

))
. (3.27)

The combined formulation may reduce to the standard or F-bar formulation by adjusting α. Furthermore,454

it can be easily shown that (3.23) is identical to the mid-point assumed deformation gradient formulation455

in [66] if α = 0 and the volume averaging of log J(X) is computed via one-point quadrature at the456

centroid of the element. In all the simulations presented in this paper, we found that setting α = 0.05457

appeared to eliminate the zero energy modes.458

Remark 2 At present, the optimal value of β is not known. While the assumed deformation gradient may459

lead to spurious modes for certain single-phase solid mechanics problems, non-zero β is not required in460

the solutions presented in the example section.461

3.4 Inf-sup Conditions and Stabilization Procedures462

It is well known that isothermal hydro-mechanical responses near drained limit may maintain stability,463

even though displacement and pore pressure are interpolated by the same set of basis functions [77]. This464

seemingly stable responses nevertheless does not imply that the pore pressure and temperature will be465

free of spurious oscillations under different thermal and hydraulic conditions. In fact, when a very fine466

temporal discretization is used or when a simulation is conducted near the undrained limit, spurious pore467

pressure may occur due to the lack of inf-sup condition [72, 77, 80]. Similar spurious behaviors have also468

been observed in the thermo-hydro-mechanics problem. For instance, Liu et al [38] study the onset of469

spurious temperature and pore pressure in small strain non-isothermal hydro-mechanical finite element470

model and subsequently propose the usage of an interior penalty method to eliminate the oscillations in471

the pore pressure and temperature fields. The goal of this section is to develop a stabilized u − pf − θ472

equal-order finite element THM problem, which eliminate spurious oscillation defined in (3.15).473

We limit focus our attention on a simplified model problem in which (1) the heat transfer and pore-474

fluid diffusion are both negligible, (2) the skeleton deformation is only infinitesimal such that derivatives475

in material and current configurations are approximately the same.476

Assumption (1) allows us to analyze the numerical stability of a porous medium at both the undrained477

and isentropic limits. Both undrained and isentropic conditions often constitute the worst-case scenario478

that is prone to spurious oscillations of pore pressure and temperature. Assumption (2) allows us to479

analyze the inf-sup condition raised in the linearized governing equation. This means that we will study480

the linear thermo-hydro-mechanics problem in the hope that this may give some indications on the more481

general nonlinear thermo-hydro-mechanical problem. A similar strategy has been adopted in Auricchio482

et al [3], Pantuso and Bathe [46] and Auricchio et al [4] to analyze the stability range of mixed finite483

element formulations for the large strain incompressible elasticity problem. As pointed out previously by484

Pantuso and Bathe [46] and Auricchio et al [4], schemes that are inf-sup stable in the linearized problem485

may still exhibit unphysical instabilities. Nevertheless, the inf-sup condition of the linear problem is still a486

valuable tool because it may serve as a necessary (but not sufficient) condition for maintaining numerical487

stability [46].488

Here we use the results from Howell and Walkington [30], which proves that finite element model489

with a saddle point structure form: (uh, pfh, θh) ∈ Vuh×V hp ×V hθ , is well-posed if the finite dimensional490
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spaces Vu
h, V hp V hθ chosen for the displacement, pore pressure and temperature interpolation satisfy the491

two-fold int-sup condition, i.e., there exists a constant Co > 0 such that,492

sup
wh∈Vuh

∫
B

(
pfhB + 3θKαsk

)
∇x·wh dV

||wh||V hu
≥ Co

(
||pfh||V hp + ||θh||V hθ

)
, (pfh, θh) ∈ V hp × V hθ , (3.28)

where || · ||V hu , || · ||V hp and || · ||V hθ are the norms corresponding to the finite dimensional space V h
u, V hp

and V hθ . Here we equip the spaces of the solutions and their corresponding testing functions with the
same associated norms, i.e.,

||u||V hu = ||u||1 =

√∫

B

∇x u · ∇x u dV ,

||p||V h
pf

=

√∫

B

Bp2 dV ,

||θ||V hθ =

√∫

B

3
(
αskK

)
θ2 dV .

(3.29)

Note that || · ||V h
pf

, || · ||V hθ and || · ||0 are equivalent norms. Unfortunately, if displacement, pore pressure493

and temperatures are all spanned by the same basis function, then the condition listed in (3.28) does not494

hold [14].495

Our new contribution here is twofold. First, we prove that a weaker inf-sup bound also exists for the496

compound matrix B. Then, for the first time, we propose a proper stabilization term that may eliminate497

the spurious oscillations of pore pressure and temperature for the thermo-hydro-mechanics problem.498

3.4.1 Weak Inf-Sup Conditions of Coupling Terms499

To derive stabilized finite element formulation, we may first quantify the inf-sup “deficiency” of the500

unstable, equal-order discretization, then propose additional terms to eliminate the spurious modes due501

to the inf-sup ”deficiency”. Previously, this strategy is used in Bochev et al [10] where a weaker inf-sup502

bound is first identified for the Stokes equations, then a stabilization term is derived to restore stability503

for two interpolated velocity-pressure pairs.504

To determine the weak inf-sup bound of individual coupling terms, let us first recall that the divergence505

is an isomorphism of the orthogonal complement of divergence-free functions in H1
0(B) onto L2

0(B) space.506

Given that the pressure pfh ∈ V hp ⊂ L2
0(B), then the isomorphism of the divergence operator guarantees507

the existence of a w ∈H1
0(B) such that,508

∇x·w = pfh and ||w||1 ≤ ||pfh||V h
pf
. (3.30)

With (3.30) in mind, we then have,509

sup
v∈H1

o(B)

|
∫
B
pfhB∇X · v dV |
||v||1

≥
∫
B
| pfhB∇X ·w dV |

||w||1
≥
∫
B
| pfhBpfh dV |
||pfh||V h

pf

≥ C̃p||pfh||V h
pf
, (3.31)

where C̃p os a constant such that,510

|
∫

B

pfhB∇x·w dV |≥ C̃p||pfh||V h
pf
||w||1. (3.32)

By letting whbe the interpolant of v ot of V u, and using the well-known approximation result in page
217 of Girault and Raviart [24] , i.e., ||w−wh||V h

pf
≤ Ch||w||1 ; ||wh||1 ≤ C||w||1 and the fact that || · ||0
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and || · ||V h
pf

are equivalent norms , we obtain,

sup
vh∈V hu ,v 6=0

∫
B
pfhB∇x· vh dV

||vh||1
≥ |

∫
B
pfhB∇x·wh dV |
||w||1

≥
∫
|B p

fhB∇x·w dV |
||w||1

− |
∫
B
pfhB∇x·(w −wh) dV |

||w||1

≥ C̃p
C
||pfh||V h

pf
−
||∇x pfh||V h

pf
||wh −w||V h

pf

C||w||V h
pf

.

(3.33)

Therefore,511

sup
vh∈V hu ,v 6=0

∫
B
pfhB∇x· vh dV

||vh||1
≥ α1||pfh||V h

pf
− α2h||∇x pfh||V h

pf
, pfh ∈ V hp , (3.34)

where h is the mesh size and C, α1 and α2 are constants. Following the same logic, it is trivial to show512

that the same procedure can be applied to the thermo-elastic coupling term, i.e.,513

sup
wh∈V hu ,v 6=0

∫
B

3Kαskθ
h∇x·wh dV

||wh||1
≥ β1||θh||V

θh
− β2h||∇x θh||V

θh
, θh ∈ V hθ , (3.35)

where β1 and β2 are positive constant.514

3.4.2 Combined Weak Inf-sup Condition515

Our goal here is to use the weak inf-sup bounds of individual coupling terms expressed in (3.34) and516

(3.35) to define a weak inf-sup bound for the thermo-hydro-mechanics problem.517

First, note that (3.34) can be written as,

sup
vh∈V hu ,v 6=0

∫
B
pfhB∇x· vh dV

||vh||1
= sup
vh∈V hu ,v 6=0

∫

B

pfhB∇x·
( vh

||vh||1
)
dV

= sup
vh∈V hu ,||vh||1=1

∫

B

pfhB∇x· vh dV.

(3.36)

As a result, (3.34) can be rewritten as,518

sup
vh∈V hu ,||vh||1=1

∫

B

pfhB∇x· vh dV ≥ α1||pfh||V h
pf
− α2h||∇x pfh||V h

pf
. (3.37)

Applying the same argument on (3.35), we have,519

sup
wh∈V hu ,||vh||1=1

∫

B

3Kαskθ
h∇x·wh dV ≥ β1||θh||V

θh
− β2h||∇x θh||V

θh
. (3.38)

Note that (3.37) implies the existence of vh ∈ V uh with ||vh||1 = 1 such that520

∫

B

pfhB∇x· vh dV ≥ C1||pfh||V h
pf
− C2h||∇x pfh||V h

pf
, pfh ∈ V hp . (3.39)

On the other hand, (3.38) implies the existence of wh ∈ V wh with ||wh||1 = 1 such that521

∫

B

3Kαskθ
h∇x·wh dV ≥ β1||θh||V hθ − β2h||∇

x θh||V hθ , θh ∈ V hθ . (3.40)
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Now let u = vh +wh, then,
∫

B

pfhB∇x·u dV =

∫

B

pfhB∇x· vh dV +

∫

B

pfhB∇x·wh dV

=

∫

B

pfhB∇x· vh dV +

∫

B

Bpfh

3Kαsk
(3Kαsk)∇x·wh dV ,

∫

B

3Kαskθ
h∇x·u dV =

∫

B

3Kαskθ
h∇x· vh dV +

∫

B

3Kαskθ
h∇x· vw dV

=

∫

B

3Kαskθ
h

B
B∇x· vh dV

∫

B

3Kαskθ
h∇x·wh dV .

(3.41)

Recall that V hpf and V hθ are spanned by the same set of basis functions. Thus, p̃h = (3Kαsk/B)θh and

θ̃h =
(
B/(3Kαsk)

)
pfh, we have,

∫

B

(
pfhB + 3Kαskθ

h)∇x·u dV =

∫

B

(pfh + p̃h)B∇x· vh dV +

∫

B

3Kαsk(θh + θ̃h)∇x·wh dV

≥ γ1
(
||pfh||V h

pf
+ ||θh||V hθ

)
− γ2h

(
||∇x pfh||V h

pf
+ ||∇x θh||V hθ

)
,

(3.42)

where γ1 = min(α1, β1) and γ2 = max(α2, β2). Thus, according to the definition of supremum, we may
express the combined weaker inf-sup bound as,

sup
vh∈V hu ,v 6=0

∫
B

(
pfhB + 3Kαskθ

h
)
∇x· vh dV

||vh||1
≥ C1

(
||pfh||V h

pf
+ ||θh||V hθ

)
− C2h

(
||∇x pfh||V h

pf
+ ||∇x θh||V hθ

)
,

(3.43)

where C1 and C2 are positive constant.522

3.4.3 Projection-based Stabilization523

By comparing (3.28) and (3.43), we notice that the difference between the inf-sup bound and the weak524

inf-sup bound is the gradient term in (3.43), i.e.,525

−C2h
(
||∇x pfh||V h

pf
+ ||∇x θh||V hθ

)
. (3.44)

This term can be used as a template for the design of stabilization terms. For instance, a simple remedy to526

restore numerical stability by directly adding perturbation gradient terms in (3.43) such that the inf-sup527

deficiency is counterbalanced. Here we consider an alternative characterization of the inf-sup deficiency528

formulated in terms of projection operators. The upshot of a projection-based stabilization method is529

that it does not depend on the mesh size h or the type of element shapes, hence easier to be implemented.530

As discussed in Sun et al [72], the rationale of the projection-based stabilization is based on the inverse531

inequality, which guarantees the existence of a positive constant CI such that,532

CIh
(
||∇x pfh||V h

pf
+ ||∇x θh||V hθ

)
≤ ||pfh −Πpfh||V h

pf
+ ||θh −Πθh||V hθ , (3.45)

where Π(·) is a projection operator leads to a piecewise constant field. Here we define Π(·) as simply the533

element average operator that reads,534

Π(·) =
1

V e

∫

K

(·) dV ;K ∈ B. (3.46)

Furthermore, since it is not clear whether the two-way couplings between pore-fluid diffusion and heat535

transfer may destabilize the system if either the pore-fluid or the thermal conductivity is too low, we536

introduce a third term as a safety measure. The resultant perturbation functional reads,537

W per(θh, pfh) = C
(1

2
||pfh−Πpfh||2V h

pf
+

1

2
||θh−Πθh||2V hθ +

∑

K∈Ω
|
∫

K

3αm(pfh−Πpfh)(θh−Πθh)dV |
)
,

(3.47)
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where C is a positive constant. The stabilization term added to the discrete balance of mass equation
(3.17) is simply the first variation of (3.47) with respect to pore pressure, i.e.,

Ĥstab(ψ, pfhn+1, θ
h
n+1) =

∑

K∈B

∫

K

Cp1(ψ −Πψ)
(
pfhn+1 − pfhn −Π(pfhn+1 − pfhn )

)
dV

+
∑

K∈B

∫

K

Cp2(ψ −Πψ)
(
θhn+1 − θhn −Π(θhn+1 − θhn)

)
dV .

(3.48)

On the other hand, the stabilization term added to the balance of energy (3.17) is obtained by taking
the first variation of (3.47) with respect to temperature and multiply the result by the temperature, i.e.,

L̂stab(ω, pfhn+1, θ
h
n+1) =

∑

K∈B

∫

K

Cθ1(ω −Πω)θhn+1

(
pfhn+1 − pfhn −Π(pfhn+1 − pfhn )

)
dV

+
∑

K∈B

∫

K

Cθ2(ω −Πω)
(
θhn+1 − θhn −Π(θhn+1 − θhn)

)
dV ,

(3.49)

where Cp1, Cp2, Cθ1 and Cθ2 are the stabilization parameters. Finally, applying the stabilized formulation
in the discrete variational equation (3.15) yields,

Ĝ(uhn+1, p
fh
n+1, θ

h
n+1,η) = 0 ,

Ĥ(uhn+1, p
fh
n+1, θ

h
n+1, ψ)− Ĥstab(uhn+1, p

fh
n+1, θ

h
n+1, ψ) = 0 ,

L̂(uhn+1, p
fh
n+1, θ

h
n+1, ω)− L̂stab(uhn+1, p

fh
n+1, θ

h
n+1, ω) = 0 .

(3.50)

While stabilization procedure provides a convenient and simple way to eliminate spatial oscillations538

from equal-order mixed finite element, the selection of stabilization parameter(s) remains a challenging539

problem [74]. This problem is further complicated by the fact that the heat transfer and pore fluid540

diffusion may occur at different spatial and time scales, and therefore making it difficult to select a541

stabilization parameter that ensures both spatial stability but avoid over-diffusion for both processes.542

Our objective here is to provide an rough estimation of the optimal value of stabilization parameters.
These estimated parameters can be served as useful guidelines for tuning the stabilization parameters
but they should not be viewed as the definitive choices for a given THM problem. The influence of the
stabilization parameter will be further tested via numerical experiments presented in the Section 5. Here
we recommend the following stabilization parameters for Equations (3.50),

Cp1 = α
[2G(1− ν)

1− 2ν

(B2(1 + νu)2(1− 2ν)

9(1− νu)(νu − ν)
)
]−1

,

Cp2 = α
2(νu − ν)

B(1 + νu)(1− ν)

[
αsk +

B(1− ν)(1 + νu)

2(νu − ν)
αm
]
,

Cθ1 = α
[
cF +

9θα2
skK

2

K + 4G/3

]
,

Cθ2 = α
[ 3αskK

K + 4/3G
− 3αm

]
θ ,

(3.51)

where α is the safety factor. νu is the undrained void ratio, which reads,543

νu =
3ν +B(1− 2ν)(1−K/Ks)
3−B(1− 2ν)(1−K/Ks)

. (3.52)

The stabilization parameters are inferred from the simplified linear thermo-hydro-mechanical problem544

in Coussy [19] (see p.136). In particular, we use the previous results from Preisig and Prévost [51] and545

Sun et al [72], which show that by setting parameter α = 1, one may recover the stable lumped mass546

formulation for one dimensional problems.547
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4 Highlights of the Implementation Method548

The thermo-hydro-mechanics model described in the previous sections is implemented in an open source,549

component-based finite element code called Albany [48, 49, 57]. Broadly speaking, the Albany code acts550

as a “glue code” that integrate a multiple re-usable libraries. Many of these libraries are available in551

the Trilinos project [27]. The key feature of Albany is the template-based programming approach, which552

allows developers to implement the finite element residuals by decomposing them into expression objects.553

These expression objects can be physical quantities (e.g. permeability, thermal conductivity, deformation),554

or mathematical entities, such as sets, points, lines, graphs, functions and boundary conditions.555

The Albany code also features a graph-based software design, which has been employed previously in556

Notz et al [44] to model thermo-fluid problem and in Sun et al [72] to model isothermal hydro-mechanical557

responses of porous media. This section is intended to provide a brief account about the implementation558

of the thermo-hydro-mechanics problem via this new technique developed by Salinger et al [57]. Readers559

interested at the software design and details of the Albany code, please refer to Notz et al [44], Pawlowski560

et al [48] and Salinger et al [57] for further details.561

Our starting point is the stabilized Galerkin form listed in (3.50) where the standard Gaussian inte-562

gration is used to compute the integrands. To assembly the balance laws listed in (3.50), we decompose563

the discretized PDE systems into a directed graph, a mathematical object formed by a collection of564

vertices and directed edges. In our case, the vertices are the expressions that form the discretized PDE565

system and the directed edges indicate the data hierarchical dependence. The decomposition of residuals566

are done while following the rules listed below.567

– The residual equations are always at the top of the hierarchy, i.e., the source vertices in the directed568

graph.569

– The nodal solutions are always at the bottom of the hierarchy, i.e., the sink vertices of the directed570

graph.571

– The directed graph formed by the decomposed expression objects must be acyclic, which means that572

there must be no cycle in the directed graph.573

– All expressions in the directed graph must be connected, i.e., no isolated vertex in the directed graph.574

Figure 4 shows a directed graph used to assemble the residuals of the thermo-hydro-mechanical model.575

One salient feature of this implementation approach is the transparency of data dependence. Even for576

multi-physical processes with very complicated coupling mechanisms, such as the THM problem, one577

may still explore, examine, and modify the topology of mathematical models in a visual way.578

In the thermo-hydro-mechanical model, each expression in the vertex is implemented as an evaulator579

[48, 49]. An evaluator stores numerical values of the expression (e.g. permeability, thermal conductivity580

and equivalent plastic strain at the quadrature points of each finite element), record the location of the581

expression in the directed graph and contains the actual code that compute the numerical values of the582

expressions (e.g. Equations (2.9), (2.39), (3.24) and 2.26). Residual vectors and the consistent tangent583

stiffness matrix are then computed via automatic differentiation performed on the directed graph via the584

Phalanx package [48, 49]. As a result, there is no need to derive the linearized forms of the variational585

equations.586

5 Numerical Examples587

We present a selection of numerical examples to validate the implementation of the finite element model588

and demonstrate the three-way coupling effects of thermo-sensitive porous media at geometrically non-589

linea regime. In particular, we will use the first example to address the numerical stability issue associated590

with material near undrained and adiabatic limits. The mechanical response of the solid skeleton is as-591

sumed to be elastic and replicated by a rate-independent neo-Hookean model. Due to the three-way592

coupling effects, the pore pressure evolves in a non-monotonic manner. This non-monotonic change is593

due to the Mandel-Cryer effect. Previously, the Mandel-Cryer effect has been observed in small strain nu-594

merical simulations of drained sphere [61]. Here our new contribution is to demonstrate the Mandel-Cryer595

effect of the undrained sphere at finite strain.596
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Fig. 4 Directed graph that represents the hierarchy of mathematical expressions for thermo-hydro-mechanical problems.

In the second example, we will examine the formation of shear band in a globally undrained specimen.597

The specimen is not in an isothermal condition. Thus, solid response is affected by the thermal expansion598

of both the solid and fluid constituents. The heat transfer is governed by a coupled diffusion-convection599

equation in which temperature changes at a material point can be caused by the structural heating,600

plastic dissipation as well as the heat and pore-fluid fluxes. In both examples, we assume that there is601

no phase transition occurred.602

5.1 Heated Globally Undrained Porous Sphere603

In this numerical example, we simulate an undrained porous sphere heated by a raised temperature604

prescribed at the outer boundary. The purpose of this example is to demonstrate the performance of605

the stabilization scheme when thermal and pore-fluid diffusion occur at different time scales. The outer606

boundary of the sphere is subjected to a zero-Darcy-velocity boundary condition and thus the sphere is607

globally undrained. The temperature of the surface of the sphere is prescribed, while the rest of the sphere608

is initially at zero degree. Due to the rotational symmetry, only 1/8 of the spherical domain is meshed. The609

radius of the sphere is one meter. The material parameters used to conduct these simulations are listed610

in Table 1. To illustrate how the stabilization term may alter the numerical solution, we conduct three611

numerical simulations with different stabilization parameters (α = 0, 1, 8). It should be noted that the612

globally undrained porous sphere problem presented here might not be the worst case scenario for spatial613

stability. For instance, other benchmark problems, such as the generalized Terzaghi’s one-dimensional614

consolidation problem coupled with heat transfer and the heated porous spherical problem with a fully615

permeable boundary, are also known to generate sharp pressure gradients and spurious oscillations at616

early time. For brevity, these problems are not included in this paper but will be explored in future study.617

In this example, a combination of low permeability and small time step is used to trigger the spurious618
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oscillation in this numerical examples. This method has been used in Preisig and Prévost [51], Sun et al619

[71] to trigger spurious oscillation for isothermal poromechanics problem. The theoretical basis for the620

onset of spurious oscillation can be founded in the one-dimensional analyses by Harari [26], Preisig and621

Prévost [51], Sun et al [71].

Parameter Description Value Unit

E Young’s modulus 2000 MPa
ν Poisson’s ratio 0.1 dimensionless
To Reference Temperature 0 ◦C
αs Skeleton Thermal Expansion 8.3× 10−5 1/◦C
αf Pore-fluid Thermal Expansion 6.9× 10−5 1/◦C
ρs Solid Constituent Density 2700 kg/m3

ρf Fluid Constituent Density 1000 kg/m3

cs Solid Specific Heat 1700 J/kg/◦C
cf Fluid Specific Heat 4200 J/kg/◦C
ksθ Solid Thermal Conductivity 2.5 W/m/◦C

kfθ Fluid Thermal Conductivity 2.5 W/m/◦C
Ks Solid Grain Bulk Modulus 50 GPa
Kf Fluid Bulk Modulus 20 GPa
ko Kozeny-Carman Coefficient 1× 10−19 m/s
µ Viscosity 1.0× 10−3 Pa · s

φf Initial Porosity 0.25 dimensionless

Table 1 Material properties of the undrained sphere in non-isothermal condition.

622

5.1.1 Verification of A Limiting Case623

Figure 5 shows the simulated and analytical transient thermal responses of center when the prescribed624

temperature θo = 5, 50 and 500◦C. The analytical solution is obtained by neglecting the poroelasticity625

coupling effect. Using Laplace transform [61], the temperature at the center is,626

θ(t) = θo − 2θo[
∞∑

n=1

(−1)n+1 exp(−n2π2τ)] ; τ =
Kθt

R2
o((1− φf)ρsθcs + φfρfθ cf )

, (5.1)

where R0 = 1m is the radius of the sphere and θo is the temperature prescribed at the surface. Previously,627

Selvadurai and Suvorov [61] observed that, for certain limited case where (1) fluid and solid constituents628

are incompressible, and (2) thermal convection and structural heating are not important, thermal diffusion629

of a spherical object can be solved via Laplace transform in a decoupled manner. In this example,630

we purposely use nearly incompressible constituents, and make the solid skeleton nearly impermeable631

to compare analytical and finite element solutions. According to Figure 5, the temperature obtained632

from the finite strain THM simulation is very similar to the analytical solution obtained via (5.1) when633

θo = 5◦C. This is attributed to the fact the permeability is relatively low and the material is stiff. The634

temperature changes due to structural heating and convection due to fluid transport are therefore very635

limited, when the prescribed temperature is close to the initial body temperature. Nevertheless, as we636

increase the prescribed temperature while holding the initial body temperature constant, the discrepancy637

between the coupled and decoupled simulations does become more significant, as shown in Figure 5, where638

θo = 50◦C and θo = 500◦C.639

Remark 3 The code has also been verified via a number of analytical solutions under the isothermal640

condition in Sun et al [72]. For brevity, the verification problems for the isothermal case are not included641

in this article. Interested readers please refer to Sun et al [72] for details.642
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Fig. 5 Comparison of the finite element solution and the analytical solution for three cases where θo = 5, 50 and 500◦C.

5.1.2 Assessments of the Stabilization Procedure643

Figure 6 shows the pore pressure of the undrained sphere 1 second after it was put into the 5 degree644

heat bath. Figure 6(a) is obtained from the stabilized FEM simulation, while Figure 6(b) is obtained645

without any stabilization procedure. Due to the low permeability, spatial oscillations of pore pressure646

occur in the standard equal-order THM element, while the stabilized equal-order THM element is able to647

deliver smooth pore pressure. On the other hand, Figure 7 compares the temperature at time = 1 second

(a) Stabilized FEM response (b) Standard FEM response

Fig. 6 Pore Pressure Profile of undrained porous sphere in heat bath.

648

from the stabilized and standard FEM simulations. Since the thermal conductivity is relatively high,649

one may expect that the temperature would not exhibit any spatial oscillation even with standard FEM650
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simulations. Yet, the simulation results show that the coupling between pore-fluid diffusion and heat651

transfer alone is significant enough to trigger spatial oscillation in the temperature field. This example652

demonstrates that the spurious oscillation of the temperature field can be triggered by an unstable pore653

pressure field, even when the thermal diffusivity is high. On the other hand, results demonstrated in654

Figures 6 and 7 indicate that the stabilization procedure is able to eliminate the spurious oscillations in655

both pore pressure and temperature. As reported in Sun et al [72], Tezduyar and Osawa [74], White and

(a) Stabilized FEM response (b) Standard FEM response

Fig. 7 Temperature Profile of undrained porous sphere in heat bath.

656

Borja [77], stabilization procedures may eliminate spurious oscillations, but it may also over-diffuse the657

numerical solutions and lead to incorrect conclusion. To determine whether the stabilization procedure658

proposed in Section 3.4.3 is able to eliminate spurious modes without over-diffusing the solutions, we659

conduct two numerical simulations on the undrained sphere, one with stabilization (i.e., α = 1), and a660

control test without stabilization (i.e., α = 0).661

Figure 8 compares the temperature and pore pressure at the center of the globally undrained sphere.662

The thermal responses shown in Figure 8(a) indicate that the stabilization procedure does not lead to sig-663

nificant changes in thermal responses. The hydraulic responses exhibited in Figure 8 indicate that a large664

stabilization parameter may alter the simulated hydraulic responses at the undrained limit and steady665

steady responses are not significantly affected by the stabilization procedure. Figure 9 shows the sur-666

face displacement obtained with different stabilization parameters. Again, we note that the discrepancies667

among standard and stabilized responses are insignificant in the transient and steady state regimes. The668

results presented in this example indicate that the stabilization procedure is able to eliminate spurious669

oscillations even when permeability is very low. Nevertheless, over-diffusion may occur if the stabiliza-670

tion parameter assigned in the simulations is larger than the optimal value. The rough estimation of the671

optimal value described in Section 3.4.3 seems to be working for this particular problem. However, the672

optimal value of stabilization parameters is usually problem-dependent, and its determination should be673

done with cautious.674

To study how the selection of stabilization parameters affects the convergence rate, we conduct addi-675

tional simulations with stabilization parameter α = 0, 1, 10 and 100. Table 2 shows the residual norms of676

the Newton-Raphson algorithm taken at the first time step when the undrained sphere has just been put677

into the heat bath. The residual norms of the trial step and the first 4 iteration steps are recorded. The678

numerical experiment indicates that while increasing the value of stabilization parameter α does lead to679

noticeable higher residual at the first two iterations, the convergence rate is not severely affected by the680

choice of the stabilization parameter.681
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Fig. 8 Time-history of the (a) temperature and (b) pore pressure at the center of the undrained sphere. The stabilization
parameter equals to 0 ( green dot), 1 (red dash line), and 8 (blue line).
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Fig. 9 Radial displacement of the boundary of the undrained sphere. The stabilization parameter equals to 0 ( green
dot), 1 (red dash line), and 8 (blue line).

5.2 Bi-axial Undrained Compression Test With Insulated Boundaries682

The second example deals with the simulation of a bi-axial undrained compression test. Our goal here is683

to demonstrate that the nonlinear coupling effect, as depicted in Figure 4, has been fully implemented684

in the finite element model and to assess how the coupling mechanism evolves before and after the shear685

band is formed.686
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α = 0 α = 1 α = 10 α = 100

Trial Step 5.911e-01 5.911e-01 5.911e-01 5.911e-01
Iteration 1 2.168e+01 4.446e+01 1.049e+02 1.538e+02
Iteration 2 4.058e-03 1.559e-02 6.413e-02 1.099e-01
Iteration 3 2.075e-10 2.349e-10 1.495e-09 3.720e-09
Iteration 4 1.327e-10 1.316e-10 1.323e-10 1.426e-10

Table 2 Residence norm (square root of the inner product of residual column vector) of the heated undrained sphere
simulations at the first 4 iteration steps.

.

A rectangular sample of homogeneous thermo-sensitive elasto-plastic material of 4cm × 1cm × 14cm687

is subjected to a prescribed vertical displacement on the top surface of the specimen, while the bottom of688

the specimen is fixed. The loading rate is −1.4cm/hour and the vertical displacement remains constant689

after reaching −1.4cm. The specimen is globally undrained and thus no-fluid-flux boundary conditions690

are prescribed at all six surfaces. To simplify the problem, gravity is neglected for this small specimen691

and we also assumed that no phase transition occurred in both the fluid and solid constituents. The692

temperature is initially uniform at ambient value (zero degree). All six surfaces are thermally insulated693

and thus no-thermal-flux condition applied to these surfaces. In other words, both the pore pressure and694

temperature fields have no corresponding Dirichlet boundary condition. To control where the shear band695

initiates, the right hand side of the specimen is tapered at z = 7cm, as shown in Figure 10. The material

14cm	
  

4cm	
  

Impervious	
  and	
  
insulated	
  
boundary	
  	
  

3.995cm	
  

4cm	
  

Fig. 10 Description of the geometry, boundary and loading conditions of the bi-axial compression problem.

696

parameters used to conduct these simulations are listed in Table 3.697

One key departure of this numerical example from previous work on thermo-hydro-mechanics is that it698

takes account of the plastic dissipation in the balance of energy equation. For the Von Mises J2 plasticity699

with no mechanical hardening, the thermomechanical dissipation Dmech reads [62],700

Dmech =

√
2

3
ε̇p
[
σY (θ)− θ ∂σY (θ)

∂θ

]
, (5.2)
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where εp is the equivalent plastic strain, ∂σY θ/∂θ is the thermal softening coefficient and σY is the flow701

stress, which corresponds to the Mises yield criterion,702

|| dev[τ ′]|| −
√

2

3
σY ≤ 0 ; τ ′ = P ′ · F T . (5.3)

Parameter Description Value Unit

E Young’s modulus 2000 MPa
ν Poisson’s ratio 0.3 dimensionless
σY Initial Yield Strength 100 MPa
∂σY /∂θ Thermal Hardening Parameter -1.6 MPa/◦C
H Mechanical Hardening Modulus 0 MPa
To Reference Temperature 0 ◦C
αs Skeleton Thermal Expansion 8.3× 10−6 1/◦C
αf Pore-fluid Thermal Expansion 6.9× 10−6 1/◦C
ρs Solid Constituent Density 2700 kg/m3

ρf Fluid Constituent Density 1000 kg/m3

cs Solid Specific Heat 1700 J/kg/◦C
cf Fluid Specific Heat 4200 J/kg/◦C
ksθ Solid Thermal Conductivity 1.0 W/m/◦C

kfθ Fluid Thermal Conductivity 100.0 W/m/◦C
Ks Solid Grain Bulk Modulus 50 GPa
Kf Fluid Bulk Modulus 20 GPa
ko Kozeny-Carmen Coefficient 1× 10−17 m/s
µ Viscosity 1.0× 10−3 Pa · s

φf Initial Porosity 0.25 dimensionless

Table 3 Material properties of the specimen in non-isothermal condition.

5.2.1 Solid Responses703

The mechanical response is influenced by the pore-fluid trapped inside the specimen and the thermal704

diffusion. Nevertheless, since there is no heat source in the boundary, the thermal effect on the mechanical705

response is insignificant. Figure 11 shows the spatial distribution of equivalent plastic strain at various706

time during the bi-axial loading test. We found that plastic strain first initiates at the left lower corner707

of the specimen at around 900 seconds. The region with plastic strain enlarges between 900 seconds and708

3600 seconds, while a shear band is formed at the defect point. After 3600 seconds of simulation, the709

vertical displacement is hold between 3600 seconds and 7200 seconds and the plastic strain distribution710

remains almost identical.711

Since the bulk moduli of the solid and fluid constituents are both one order higher than the bulk712

modulus of the solid skeleton, the global undrained response of the material is expected to be nearly713

isochoric if the specimen is under the isothermal condition. Nevertheless, as the thermo-hydro-mechanical714

simulation is run under the non-isothermal condition, the solid skeleton may expand or shrink due to715

temperature change. This temperature change is due to the mechanical plastic work that converts into716

heat. The heat in return causes expansion of the solid skeleton. Figures 12 and 13 show the Jacobian717

of the deformation gradient, detF and the (Eulerian) porosity φf of the solid skeleton at different time718

during the bi-axial loading. Due to the globally undrained status, both the Jacobian and porosity do not719

change much before the onset of plastic yielding and shear band as shown in Figures 12(a) and 13(a).720

This nearly incompressible response also indicates that structural heating has negligible influence on721

temperature for this particular simulation. On the other hand, the solid skeleton exhibits a noticeable722
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(a) at 900 seconds (b) at 1800 seconds (c) at 2700 seconds

(d) at 3600 seconds (e) at 5400 seconds (f) at 7200 seconds

Fig. 11 Equivalent plastic strain at various time during the biaxial loading test.

volmetric expansion/contraction pattern inside the shear band at 3600 seconds after the vertical loading723

is prescribed. We record the maximum and minimum of the Jacobian changing from 1 to 1.05 and724

0.76 respectively, while the maximum and minimum of the porosities also change 0.25 to 0.26 and 0.19725

respectively after the shear band is formed, as shown in Figures 12(c) and 13(c). This pattern is located726

at the region where plastic deformation is concentrated (as shown in Figure 11). Due to the coupling727

of the thermo-hydro-mechanical processes, this plastic work inside the shear band may trigger multiple728

deformation mechanism. For instance, the plastic work that converted into heat may cause volumetric729

expansion of both the solid and fluid constituents, but also lead to the shrinkage of the yield surface730

in stress space and more plastic strain to be accumulated. Meanwhile, as porosity changes due to the731

thermal effect, both the thermal and hydraulic diffusivities also changes accordingly.732

5.2.2 Heat Transfer733

Since the surface of the specimen is thermally insulated, the temperature increase in the specimen is due734

to the structural heating and plastic dissipation. Figure 14 shows how temperature distributes in the735
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(a) at 900 seconds (b) at 1800 seconds (c) at 3600 seconds

Fig. 12 Determinant of the deformation gradient at various time during the biaxial loading test.

(a) at 900 seconds (b) at 1800 seconds (c) at 3600 seconds

Fig. 13 Porosity at various time during the biaxial loading test.

specimen during the ramp-and-hold loading. We observe that temperature first raised in the plastic zone,736

as the vertical displacement is accumulating between t = 0 and t = 3600 seconds. The heat generated737

by the plastic work then transfers in the solid specimen through two mechanisms, the convection due to738

pore fluid transport, and the thermal diffusion. In this particular simulation, the effective permeability is739

very low (10× 10−19 m/s), and thus the heat transfer process is dominated by the thermal diffusion. As740

a result, temperature first raised in the region where plastic strain initiated, while the thermal boundary741

layer gradually propagates. As shown in Figure 14, the thermal diffusion continues when no more dis-742

placement is prescribed between t=3600 seconds and t= 7200 seconds. Since the equivalent plastic strain743

becomes stable at this phase, the heat source vanishes and the spatial gradient of temperature reduces.744

In particular, the maximum and minimum temperature changes from 2.28 and 1.12 Celsius at t= 3600745

seconds to 1.79 and 1.71 at t= 7200 seconds.746
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(a) at 900 seconds (b) at 1800 seconds (c) at 2700 seconds

(d) at 3600 seconds (e) at 5400 seconds (f) at 7200 seconds

Fig. 14 Temperature at various time during the biaxial loading test.

5.2.3 Pore-fluid Flow747

The pore-fluid inside the specimen is trapped inside the specimen due to the no-flux boundary condition.748

Figure 15 shows how pore pressure distributes during the ramp-and-hold loading. Due to the low per-749

meability of the specimen, the excess pore pressure easily builds up in the specimen between t = 0 and750

t = 3600 seconds due to the solid skeleton deformation. While this excess pore pressure may dissipate,751

the low permeability of the specimen and the globally undrained boundary condition may both cause752

the pore pressure taking longer time to reach steady state. As a result, the pore pressure at the end of753

the simulations remains less evenly distributed than the temperature. Furthermore, due to the thermal754

effect on the solid and fluid constituents, temperature may affect the amount of excess pore pressure755

accumulated in the pores. By comparing Figure 15 with Figure 14, we notice that the hotter region756

generally has higher pore pressure, although the distributions of pore pressure and temperature do not757

resemble the same pattern.758

5.2.4 Refinement Study759

To assess the mesh sensitivity of the thermo-hydro-mechanical responses, a mesh refinement study is760

conducted. Figure 16 shows the three meshes obtained from subdivision refinement. The total number761

of the finite elements are 448, 3584 and 28672 accordingly. Figure 17 shows the equivalent plastic strain762

accumulated in the three finite element meshes at the end of the simulation. While the plastic zone763
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(a) at 900 seconds (b) at 1800 seconds (c) at 2700 seconds

(d) at 3600 seconds (e) at 5400 seconds (f) at 7200 seconds

Fig. 15 Pore Pressure at various time during the biaxial loading test.

remains very similar to all three meshes, it is clear that the finer mesh tends to accumulate higher plastic764

strain in the shear band. This mesh dependence is difference than the dynamics simulation of isothermal765

porous media in [79] where equivalent plastic strain is relatively insensitive to the mesh refinement even766

though shear band width is found to be narrower in fine meshes. The porosity, which depends on the767

the volumetric deformation, temperature and pore pressure, also exhibits mesh dependence as shown in768

Figure 18.769

Presumably, both thermo-mechanical and hydro-mechanical coupling effects may both introduce rate-770

dependence on the mechanical responses. Nevertheless, the results demonstrated in Figure 17 indicate771

that this induced rate-dependence is not sufficient to regularize the problem in the transient case. Mesh772

dependence is also observed in the temperature and pore pressure distribution, as shown in Figures 19773

and 20 respectively. The temperature of the shear band in the fine mesh is found to be higher. This is774

mainly attributed to the fact that temperature increases inside the plastic strain is caused by plastic775

dissipation. On the other hand, the pore pressure is not concentrated in the shear band as shown in776
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(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Fig. 16 Meshes used in refinement study.

(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Fig. 17 Equivalent plastic strain at t= 7200 seconds in three meshes.

Figure 20. The pore pressure distributions of all three meshes look similar, except at the corners where777

pore pressure tends to be lower at coarser mesh.778

Figure 21 shows the time-history of the temperature and pore pressure at the lower left corner of the779

specimen. Interestingly, plastic deformation seems to play a significant role on the evolution of both pore780

pressure and temperature. In particular, temperature at the lower left corner is almost unchanged before781

the yielding. After the yielding, temperature keeps raising until the prescribed vertical displacement782

increment stops at 3600 seconds. While pore pressure begins to increase right after the simulation begins,783

the onset of plastic yielding leads to a sudden drop of pore pressure followed by another monotonic increase784

in pore pressure. Both temperature and pore pressure gradually decrease when vertical displacement holds785

still from time = 3600 to 7200 seconds.786

Note that refining the mesh seems to have opposite effects on temperature and pore pressure at787

the corner node. While refining the mesh leads to a lower pore pressure accumulated at the corner,788

the refinement also cause a higher temperature. The increase of the temperature in finer mesh can be789

explained by the fact that the power that converts plastic dissipation into heat is higher in finer mesh790

as evidenced by the higher equivalent plastic strain in the fine mesh shown in Figure 17 when vertical791

displacement is increasing. Nevertheless, as heat is transferred via both diffusion and convection, the792

initially sharp temperature gradient triggered during the formation of shear band fades over time. At793
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(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Fig. 18 Porosity at t= 7200 seconds in three meshes.

(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Fig. 19 Temperature at t= 7200 seconds in three meshes.

7200 seconds after the simulation, the temperature is close to steady state as indicated by the vanishing794

of sharp temperature gradient shown in Figure 14. This indicates that the mesh dependence of the795

temperature field is more severe when plastic deformation provides a significant heat source. However,796

this mesh dependence seems to be more significant when the material is close to adiabatic limit.797

On the other hand, we find that pore pressure at the left lower corner is lower in the finer mesh. This798

observation is different than the isothermal shear band observed in Sun et al [70] where the magnitude799

and distribution of pore pressure were insensitive to mesh size, even though equivalent plastic strain was800

also found to be higher in fine mesh. Furthermore, since the porosity and permeability at the lower left801

corner are both actually lower in the fine mesh, pore fluid is more likely to be trapped and build up excess802

pore pressure locally. The fact that the pore pressure drops but not increase upon refinement therefore803

indicates that the thermal diffusion process may limit the pore pressure build up.804

Figure 22 shows the vertical force applied on the top of the specimen. The force due to the displacement805

prescribed at the top of the specimen is found to be around -50kN for the coarse mesh and around -48kN806

for the medium and fine meshes. In all three cases, the vertical force is at its peak at 3600 seconds where807

the displacement increment stops. In between 3600 seconds and 7200 seconds, the vertical force drops808

slightly. By comparing results from different meshes shown in Figures 21 and 22, we conclude that the809

thermo-hydro-mechanical responses are sensitive to the level of refinement. While the discrepancy of the810
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(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Fig. 20 Pore Pressure at t= 7200 seconds in three meshes.
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Fig. 21 Time histories of temperature and pore pressure at the lower left corner of the three meshes.

results seems to be decreased upon each refinement, it is not clear whether the solution will be converged811

if further refinement takes place.812

5.2.5 Thermo-hydro-mechanical Coupling Effects Under Undrained Condition813

As reported in [79], shear band width is influenced by the diffusivity of the pore fluid under isother-814

mal condition. In non-isothermal condition, both pore-fluid and thermal flux may influence mechanical815

responses of the solid skeleton and vice versa. To determine how thermal and hydraulic diffusivities influ-816

ence the thermo-hydromechanical responses, we conduct a parametric study by varying the permeability817

and thermal conductivity.818

In the first set of tests, we conduct two numerical simulations with material parameters listed in Table819

3, but the thermal conductivities of both constituents are both multiplied by 100 in the first simulation820

and divided by 100 in the second simulation. Figure 23 demonstrates the temperature at 7200 seconds821

after the loading. As expected, the material with lower thermal conductivity reaches higher temperature.822

The temperature also takes longer time to dissipate. Hence, temperature is higher inside the shear band823

zone.824
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Fig. 22 Time-history of vertical force on the top layer of the specimen.

(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Fig. 23 Temperature profile at time = 7200 seconds, with initial effective thermal conductivity equals to (a)
0.013W/m/◦C, (b) 1.33W/m/◦C and (c) 133W/m/◦C.

Interestingly, this higher temperature inside the shear band also influences the hydraulic properties.825

Figure 24 shows the pore pressure distribution and flow streamlines at 7200 seconds after the loading.826

By comparing Figure 23 and 24, one may notice that the pore pressure is higher and more concentrated827

in the shear band in the low thermal conductivity case, even though the initial effect permeability of828

material are the same in both simulations. Notice that all these features are lost if the heat produced829

by plastic dissipation is not captured in the balance of energy equation. Varying thermal conductivity830

nevertheless does not lead to significant changes in the plastic response, as shown in Figures 25 and 26.831

In the second set of tests, we conduct two additional numerical simulations with material parameters832

listed in Table 3, but the Kozeny-Carmen coefficient is changed to 10−14m/s and 10−20m/s respectively.833

Figure 27 compares the temperature distribution at the end of the numerical simulations. Even though the834

material is globally undrained, varying permeability does introduce noticeable changes in temperature.835

This results indicate the importance of coupling effects. Figure 28 shows the flow streamline obtained836

form simulations with permeability coefficient equals to (a) 10−16 m/s, (b) 10−19 m/s and (c) 10−22 m/s.837

The permeability material clearly has a significant impact on both the magnitude of the pore pressure838
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(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Fig. 24 Flow streamlines at time = 7200 seconds, with initial effective thermal conductivity equals to (a) 0.013W/m/◦C,
(b) 1.33W/m/◦C and (c) 133W/m/◦C.

(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Fig. 25 Equivalent plastic strain at time = 7200 seconds, with initial effective thermal conductivity equals to (a)
0.013W/m/◦C, (b) 1.33W/m/◦C and (c) 133W/m/◦C.

and the flow patterns in the undrained specimen. Interesting, we found that the plastic responses are not839

sensitive to changes of permeability and thermal conductivity under the globally undrained and insulated840

conditions, as shown in Figures 29 and 30.841

5.2.6 Convergence Rate and Stabilization Parameters842

Finally, additional biaxial compression simulations with α = 0, 1, 10 and 100 were conducted to determine843

whether the value of the stabilization parameter has a noticeable impact on the convergence rate. Table 4844

shows the residual norms of the Newton-Raphson algorithm taken at the second time step when a small845

displacement increment is applied on the top of the domain. The residual norms of the trial step and846

the first 4 iteration steps are again recorded. The finding is consistent with the results obtained from the847

heated undrained sphere problem. The numerical experiment again indicates that increasing the value of848

stabilization parameter α does lead to a slightly higher residuals, but the difference in convergence rate849

is within an order even when the stabilization parameter α is increased by 10000%. Whether one may850

expect similar trends for all THM boundary value problems remains unknown, but the two numerical851
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(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Fig. 26 Porosity at time = 7200 seconds, with initial effective thermal conductivity equals to (a) 0.013W/m/◦C, (b)
1.33W/m/◦C and (c) 133W/m/◦C.

(a) Low Permeability (b) Medium Permeability (c) High Permeability

Fig. 27 Temperature profile at time = 7200 seconds, with permeability coefficient equals to (a) 10−16 m/s, (b) 10−19

m/s and (c) 10−22 m/s.

experiments seem to suggest that the convergence rate is not very sensitive to the magnitude of the852

stabilization parameter.

α = 0 α = 1 α = 10 α = 100

Trial Step 7.275e-04 7.275e-04 7.275e-04 7.275e-04
Iteration 1 2.702e-01 2.667e-01 2.634e-01 2.611e-01
Iteration 2 2.735e-07 2.939e-07 3.297e-07 3.649e-07
Iteration 3 8.147e-11 8.139e-11 8.255e-11 1.426e-10
Iteration 4 6.205e-11 6.343e-11 6.525e-11 8.694e-11

Table 4 Residence norm (square root of the inner product of residual column vector) of biaxial compression simulation
at the first 4 iteration steps.

.

853
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(a) Low Permeability (b) Medium Permeability (c) High Permeability

Fig. 28 Flow streamlines at time = 7200 seconds, with permeability coefficient equals to (a) 10−16 m/s, (b) 10−19 m/s
and (c) 10−22 m/s.

(a) Low Permeability (b) Medium Permeability (c) High Permeability

Fig. 29 Temperature profile at time = 7200 seconds, with permeability coefficient equals to (a) 10−16 m/s, (b) 10−19

m/s and (c) 10−22 m/s.

6 Conclusion854

The new contribution of this work is twofold. First, we establish a large deformation thermo-hydro-855

mechanics theory that fully incorporates the influences of the geometrical nonlinearity on the full coupled856

solid deformation, pore-fluid diffusion and heat transfer processes. Using the automatic-differentiation857

technique to simplify the implementation process, the nonlinear relations between porosity, permeability858

and thermal conductivity is fully captured. Secondly, we introduce a stabilized equal-order mixed finite859

element model that provides stable numerical solutions without over-diffusion. The spatial stability is860

maintained even when pore-fluid and thermal diffusivities are significantly different. To the best of the861

author’s knowledge, this is the first time the large deformation thermo-hydro-mechanical behavior of862

porous media is captured with an equal-order finite element in the geometrical nonlinear regime. Our863

numerical results indicate that such a stabilization procedure is able to eliminate the spurious oscillations864

even near the undrained and adiabatic regimes. Nevertheless, it is acknowledged that the stabilization865

parameter introduced in this paper may require tuning through trial-and-error. The numerical simulations866

also exhibit mesh dependence, which indicate that a regularization procedure (e.g. nonlocal scaling [7, 67],867
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(a) Low Permeability (b) Medium Permeability (c) High Permeability

Fig. 30 Temperature profile at time = 7200 seconds, with permeability coefficient equals to (a) 10−16 m/s, (b) 10−19

m/s and (c) 10−22 m/s.

gradient plasticity [23]) is necessary to circumvent the mesh dependence. These shortcomings will be868

addressed in future studies.869
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86(1):21055

74. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element ma-1056

trices and vectors. Computer Methods in Applied Mechanics and Engineering 190(3):411–4301057

75. Truty A, Zimmermann T (2006) Stabilized mixed finite element formulations for materially nonlin-1058

ear partially saturated two-phase media. Computer methods in applied mechanics and engineering1059

195(13):1517–15461060



44 WaiChing Sun

76. Wan J (2002) Stabilized finite element methods for coupled geomechanics and multiphase flow. PhD1061

thesis, Citeseer1062

77. White JA, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-1063

diffusion and their application to fault zone transients. Computer Methods in Applied Mechanics1064

and Engineering 197(49):4353–43661065

78. Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Computer1066

Methods in Applied Mechanics and Engineering 135(3):201–2091067

79. Zhang H, Sanavia L, Schrefler B (1999) An interal length scale in dynamic strain localization of1068

multiphase porous media. Mechanics of Cohesive-frictional Materials 4(5):443–4601069

80. Zienkiewicz OC, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics with1070

special reference to earthquake engineering. Wiley Chichester, UK1071


