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Motivation: climate change and energy demand

» NCA: average annual temperatures in Alaska are projected to rise by 2°F to 4°F by 2050

Annual temperatures for Alaska, 19900-2018
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Motivation: climate change and energy demand

» EIA projects nearly 50% rise in world energy usage by 2050, led by the growth of non-OECD regions
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Motivation: Engineering applications
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Artificial ground freezing Freeze-thaw damage

Understanding Frozen porous media is important for

1. ground freezing technique (for construction, sealing contaminated
(e.g. Fukushima Daiichi nuclear power plant).

2. Freeze-thaw damage of pavement under the influence of changing
climate.



Motivation: Engineering applications

» Porous Media (Geomaterials — frozen soil.)

* In northern climate areas (or permafrost area)
- Mechanical volume expansion of pore water: frost heaving

- Changes of climate lead to substantial temperature increase:
(instability of structures, freeze-thaw actions, etc.)

- Pavement damage, under ground pipeline damage

Stable frozen soil belps hold the pipe in place

1 % 9 3

As soil freezes around pipe, ice
farms and heaves the pipe upward

Unfrozen soll

<Frost Heave>

\

Ground setties as jce-rich
permafrost around plpe thaws

- Vi

Unfrozen soil Frozen iceich soll

Stable unfrozen soil helps hold the pipe in place

<Pavement damage> <Thawing Settlement>

https://www.neb-one.gc.ca/pplctnflng/mjrpp/archive/mcknzgs/rfd/rfdvip3-eng.html



Motivation: Preparation for climate changes

ALEC LUHN SCIENCE 10.20.15 7:00 AM

ARCTIC GITIES CRUMBLE AS CLIMATE CHANGE THAWS
PERMAFROST

A man walks past a Soviet era housing block near the Nurd Kamal mosque in the arctic Russian city of Norilsk.
@ ROGER BACON/REUTERS/ALAMY

This story originally appeared on the Guardian and is part of the Climate
Desk collaboration.

From Wired Magazine, Oct 20th



Motivation: Crack forms within the shear band
during thawing

- » % oy :
Frozen soil specimen at the end of the undrained triaxial compression test (LEFT), immediately exposed to the
room temperature (MIDDLE) and after 8 minutes at room temperature (RIGHT).



Freezing-induced anisotropy in freezing clayey soill




Frozen soll as a three-phase material

» Premelting dynamics theory explains the physics
of freezing phenomenon in porous media
(Rempel, et al. 2004, Wettlaufer & Worster 2006)

unfrozen film water
(interfacial premelting)

__crystal

» Soils are hydrophilic and prefer contacting o

unfrozen water rather than ice

» supercooled pore water
(curvature-induced premelting)

> Interfacial premelting separating ice from solid
skeleton.

—— crystal ice (C)

@— solid particle (S)

—  f1lm water

» Cryo-suction effect is well explained.

} liquid water (L)

L pore water




Multi-phase decomposition

> Consider porous media with porosity ¢
» The pores are saturated with the mixture of ice (C) and water (L).

 Ve+ WL
b= %
» Degree of saturations for liquid water and ice:
. VL . .
St = Vc—i—VL’SC =1-5L

Representative volume element




X-ray tomographic experiments in freezing soill

» Experimental study shows the anisotropic deformation of frozen soil (Amato et al. 2021).
» Two potential reasons:

» Cryo-suction effect. Water flows from unfrozen to the frozen region.
» Preferred direction of ice growth.

» Transverse isotropy depends on the growth of ice.
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Fully coupled thermal-hydro-mechanical approach

Three fields to solve — Temperature, water pressure, and displacement
Three governing equations




Component-based PDE for THM problems

_ ' Specific Heat
Balance of Energy
~_—__ Effective Conductivity

T
Permeability

: ~N 4 Temperature
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- > Deformation Gradient » Displacement

Balance of Mass —
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oy a4 /" Pore Pressure
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Balance of Linear Momemtum

- Internal Vériables/
Total Stress —3

~— ™ Effective Stress

The computer model can be considered as a mathematical object called directed graph.
Each vertex represent a physical quality

Each edge represents a mapping or function that links the upstream and downstream physical qualities
(vertices)

Sun, UNME 2015



Balance of mass

dSpS

dt +p°Vevg =0
dL L .
d;) + p= Vv, = —1hp ¢
dC C .
P + pC V-ve = e Rate of phase transition

dt from liquid to ice.

PL [QbSL + SV -Jvg| + pc [quC +1ScV - ’vs] + V- [,OL(qb’f)L — (bSTVT)] =0

e ’

Displacement related Pressure, temperature Soret effect
related




Balance of energy
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Specific heat / / \'

Heat conduction Heat convection Mechanical dissipation

0S
CF = CFSQbS + CFL</5L + CFC¢C + Pcﬁbla—;

., Effect of latent heat (Na and Sun 2017)
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Balance of linear momentum

> Bishop’s effective theory (Bishop 1959)

V-o'+pg=0

o' = o + pl, with|p = SLpr, + Scpc

Effective pressure




Constitutive laws




Assumption/hypothesis to be tested

» We assume that the frozen part of the frozen clay is approximately transverse isotropic.
» We assume the isotropic plane is orthogonal to the largest temperature gradient component.

n |sotropic plane

Effective medium

06 08 10 12 14 16 18 2.0




Anisotropic elasticity

» Consider the isotropic elastic stored energy function for soil. (Na and Sun 2017). n Isotropic plane

\Ij(g\e,, 5:) = kSCI'yOES/ - (po — kscryo)cr eXp (5VOC:€V) + %IU,E§2

Cryo-suction pressure

» Projection of strain.
e =P:g°

P=cl+Z(mem+mom)+2LITdm+meI+Iocom+molI) (Semnanietal. 2018)

m=ngxn (o O)z’jkl = (.)jl(o)ik: (0O O)ijkzl = (')z‘l(o)jk




Anisotropic elasticity

» Freezing induced transverse isotropy

P

X

x(Sc), for x = c¢1,co,and c3

X

» Elastic stored energy becomes:
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Anisotropic plasticity

1500

» Consider Modified Cam-Clay vyield criteria. \}Q %, Yild Sutace (100
. . . . —~ NG N 1e urface (T= -
» Consider cryosuction effect (Nishimura et al. 2009). g S, 0%
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* The objective of the model is to link the degree of liquid saturation
with liquid pressure and temperature (similar to the three-phase -1,000
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characteristic curve for water-air-solid).
e Thermodynamic equilibrium of freezing soil (Clausius-Clapeyron pi(kPa) ST
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* Freezing characteristic function based on the van Genuchten (1980)
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Numerical examples

» Boundary conditions.

» Compare isotropic and transversely isotropic models.

» Calibrate against experimental results: top displacement, lateral displacement, and freezing front.
« Multi-objective optimization using Dakota software. T=5
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Results: Ice growth
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Results: Vertical displacement
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Results: Lateral displacement

Isotropic THM
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Results: Lateral displacement

T=-5 T=-12 T=-21
80 80 80
60 60 60
Freezing- Sw S0 Za0 \
dependent/Transv 2 5 2
. . 20 20 20
ersely isotropic
0 0 0
2 0 2 -2 0 2
radlal dlsplacement mm) radial displacement (mm) radial displacement (mm)

— 1h 80 80

—2h
—3h
. —4h 60 60
Experiment —h
40 40
20 20
0

height (mm)
height (mm)

radlal dlsplacement mm)

-2 0 2
radial displacement (mm)

80

60

height (mm)
5

20

AN

-2 0 2
radial displacement (mm)

The predictions on the
lateral
expansion/contraction
improve but not yet a
perfect match.

Yin, Q., Ando, E., Viggiani, G., & Sun, W. (2022).
Freezing-induced stiffness and strength anisotropy in
freezing clayey soil: Theory, numerical modeling, and
experimental validation. International Journal for Numerical
and Analytical Methods in Geomechanics. 1— 28.
https://doi.org/10.1002/nag.3380. (Cover)
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Climate-controlled triaxial compression test on frozen Nevada sand
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Climate-controlled biaxial compression simulation on frozen Oslo Clay
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Climate-controlled biaxial compression simulation on frozen Oslo Clay
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deviatoric stress, ¢ (MPa)
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Modeling the growth of of ice lens




Motivation

» Ice lensing and its consequences
- In the U.S., ~$2,000,000,000 had been spent annually to repair frost damage of roads.

- Frost heaving and thawing settlement that damages the infrastructure: mainly due to the growth and thaw of ice lenses.
- Ice lens: a body of ice accumulated in a localized zone.

Frost heave
——---l----_—

- —lce lenses
— /

Frozen

Ice lens

R e
e L

https:// dmr.nd.v https://dmr.nd.gov EGU BLOGS (https://blogs.egu.cu/)

» Miller’s theory

- cf. Miller [1972], Miller [1977], Miller [1978], O’Neill and Miller [1985].
- A new ice lens can form if the compressive effective stress between particles 1s zero or negative.

—> Ice lens can be viewed as a segregated ice inside the freeging-induced fracture.

35



Modeling approach

» Frozen soil: three-phase material

Modeling goal:

- Heat transport (Thermo-)
- Water migration towards the freezing front (Hydro-)
- Frost heave and thawing settlement (Mechanical)

- Phase transition

- Brittle fracture

Frozen soil Idealization

» Diffuse interface approximation via phase field

Sharp interface Diffuse interface

I .

Spatial coordinate Spatial coordinate Reproduced from Miche et al. [2010]

»
»

Field variable

Variable

36



Modeling approach

» Multi-phase-field approach: ice lens

- Ice lens can be viewed as a segregated ice inside the freezing-induced fracture.

Phase field: ¢ ] of (¢ =0 : frozen, b
- Indicates the state of the fluid. — C = ¢ _ egv2c, where: L c =1 : unfrozen,
- Solved via Allen-Cahn model: M. e

Lc€(0,1) : diffuse interface,

- [ x'(e,d) = [1 = S"(0)][1 — ga(d)]

Phase field: d (d =0 : intact,

- Indicates the damaged zone. _ 0ga(d) H* =d— 12V2d, where: { d =1

: damaged,
- Phase field model for fracture: od

| d € (0,1) : transition zone,

~

Phase field, ¢ Phase field, d Ice lens, x*(c, d)

> » >
> > >

Intact

Segregated ice

Damaged .o
& inside fracture

Intact

Frozen

front Unfrozen

Taber [1930]



Modeling approach

» Effective stress principle

- Unlike crystallized ice inside the pores, deformation of ice lens induces the deviatoric stress:

o=a0" —pI —¢[1 — S"(c)]a,K;I
/ T

Effective stress Pore pressure Volumetric expansion
—/ ¢ —/ —/\> — \ — — —
o' = ga(d)Tiy + [1 — 9a(d)] 0 4am p=5"(c)pw + [1 = 5“(c)]pi ay = ga(d) v ine + [1 = ga(d)] o dam
o' : contribution from the solid skeleton Dw : pOre water pressure Qv int © €Xpansion coefficient (pore ice)
0.y - contribution from the ice lens p; : pore ice pressure Qv dam - €Xpansion coefficient (ice lens)

» Freezing retention and relative permeability

- Freezing retention curve: describes temperature-dependent cryo-suction.
1

1 n
Seryo = Pi — Dw = Dref {[{exp (bg(0 —0,,) )} ™a — 1} vC " (van Genuchten [1980], DuWayne and Allen [1972])

- Relative permeability: describes the pore blocking due to in-pore crystallization of the ice phase.

_ _krk \V4 _ . _ Qw(.\1/2 o _Qw( \1/mya muG ) 2
Wy = (Vpw — pwg), where: k. = S%(c) 1 1—5%c) (Luckner et al. [1989])
Hw
w,, : Darcy’s velocity k : permeability tensor ,
, . Dref; MyG, NG, O : material parameters
[y © Water viscosity k.. relative permeability
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Modeling approach

» Clausius-Clapeyron equation and Allen-Cahn model

- Phase field simulations for solidification (for pure substance):

1. Jfc
iy

M., dc

— €2V?¢, where the driving force: f. = Wege(c) + Fe(0)pe(c),  Boetinger etal. [2002)

while: | F.(0) = p; Lg (1 — Hi) — Clausius-Clapeyron eq.

ge(c) : double-well potential W. : height of energy barrier
M. : mobility parameter

pe(c) @ interpolation function

- To replicate the intense growth of the ice lens, we replace F.(6) with F. (6, d),

0 0\ U _
* * ndamaged (d = 0)
F20,d) = il (1= 5 ) + 1= gl (1- 5
m m —10
K, g’ : kinetic parameters , — 08
t=>50s t=100s t=200s t=400s — 06
0.001 m
Additional kinetic term that describes: Damaged d=1) 04
different growth rate between pore ice and ice lens. ' , g
(cf. Espinoza et al. [2008]; Choo and Sun [2018]) 000t m g ,

t=>50s t=100s t=200s t=400s

Ice saturation

39



Multi-phase-field model for ice lens growth and thaw

» Governing field equations

- Balance of linear momentum (solid displacement, u): —

V-o+pg=0

- Balance of mass (pore water pressure, P ):

$S" (c)(pw — pi) + {8 (€)pw + [1 = S ()]pi} V-0 + V- p“ Dy, = 0 - THM
- Balance of energy (temperature, 6 ):
(p*cs + p“cw + p'ci)0 + & [(pwCw — pici)(0 — Om) + piLo] SV (c) + V-q =7
c=0 c=1
g—o | Homogeneously | | Intactand - Damage evolution equation (damage parameter, d):
frozen water-saturated agd ( d)
H* + (d —15V?d) =0
A a0 T A= aVid)
Qo1 [ Ice lens ]ﬁ[ (Hydraulically) ]
formation fractured - Allen-Cahn equation (order parameter, ¢ ):
—» : Damage evolution (A) 1 . afc 2«2
—» : Phase transition C + — Ve =0
H:/TZ—B‘[ o MC aC ‘

>

THM

+
Fracture

THM
+
~ Fracture

+

Phase
transition

40



Numerical examples

P Validation exercise: homogeneous freezing

- Benchmark experiment by Feng et al. [2015].

- Unidirectional freezing (from the bottom to the top), unlimited water supply.

- Does not involve fracture process: homogeneous freezing.

- Temperature measurements: TC2, TC3, TC4.

30 mm R
Pw =20
Y
TC4 o
Foam 1:
0o = 0.96
ks = 62.855 W/m/K |
Foam 2: TC3. 50 mm
¢ = 0.98
Ks = 44 .48 W/m/K ) /
TC2
Yy
T -z A A/ 1
TC1 » , 4 mm
N d = 264.15K

Numerical experiment

Directly applied temperature
recorded at TC1 as a Dirichlet BC
at plane AA’.

—

—

S

—

>

290

285 ¢

280

275

270 ¢

265

O Feng et al. [2015]
This study

Oan = 20.8e" 01V 1 264.75 K

Q O 0O 00 oo o o o 0o 0O 0 o ~ -

TC1

260

60 120
t [min]

180
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Numerical examples

» Validation exercise: homogeneous freezing 0.05
- Benchmark experiment by Feng et al. [2015]. 0oal
- Unidirectional freezing (from the bottom to the top), unlimited water supply. El
- Does not involve fracture process: homogeneous freezing. 5 003
- Temperature measurements: TC2, TC3, TC4. Eo
-; 0.02
t = 10 min t = 60 min t = 120 min t = 180 min m001~
0
Experiment
(Feng et al. [2015]) 290
285

1.0
— 0.6

0.4

This study

lce saturation ()

0.2

0.0

Foam 1

Foam 2

0 Feng et al. [2015]
This study

60 120 180
t [min]

0 Feng et al. [2015]
This study

60 120 180
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Numerical examples

» Multiple ice lens growth and thaw in heterogeneous soil

- Unidirectional freezing (from the top to the bottom), unlimited water supply.
- Random porosity profile, porosity-dependent material properties:

3/1—2v 1 — ¢ ng
G=— exp |10(1 — (Osman [2019])) Gi=¢ (—) ang and Sun [2017
9 ( 1 Ty ) p[ ( ¢O)] d d,ref 1 — Qbref (Wang [ ),

278 . . Iy 0.1

A
276 | 1 Temperature BC 0.08
at the top

- 274 : 06!
= O = 273.15 K =l o
= freezing " ' thawing 0.1 m ~
<™ 272t T 0.04

270 r 0.02 -

0(t) = 273.15 + 3 cos (27t/15) K y A
268 : : P =0
t [hours] | | 0.2

0.04 m




Numerical examples

» Multiple ice lens growth and thaw in heterogeneous soil

- Unidirectional freezing (from the top to the bottom), unlimited water supply.

- Random porosity profile, porosity-dependent material properties:

1 —2v

0.1

3

2

(

1+

v

0.08 |

0.02 |

0.2

0.6

) exp [10(1 — ¢g)] (Osman [2019))

1 — o
Gd = Gd ref 1_ 0.
- ¢ref
0.8 T T
Ice lensing
Homogeneous freezing
0.6 -
g
B o4l
=
s Ice lens formation —
0.2
Ice lens formation —~
O |
0 2 4

Ice lens Temperature (K)
0.1 04 0.7 1.0 270.0 272.0 2740  276.0
— ! = b

ne
) (Wang and Sun [2017])

T T T

Frost heave

—

Ice lens formation —

T

T

Thawing settlement

B —

(scaling factor: x5)

16
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Summary and conclusions

» Multi-phase-field approach for ice lens growth

- Ice lensing 1s modeled via combination of two phase fields (state variable and damage parameter) based on Miller’s theory.

- Coupled with THM model, this approach can be viewed as a generalization of a model for phase-changing geomaterials.

» Freezing induced anisotropy for frozen soil

- We introduce an anisotropic critical state plasticity model for frozen soil.

- Compared with Micro-CT images obtained from a temperature gradient experiment, we found that the experiment results
support the anisotropy hypothests.
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Further readings

International Journal for Volume 46, No 11, 10 August 2022

Numerical and Analytica
Methods In Geomechanics
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