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Abstract The thermo-hydro-mechanical (THM) coupling effects on the dynamic wave propagation and strain local-6

ization in a fully saturated softening porous medium are analyzed. The characteristic polynomial corresponding to the7

governing equations of the THM system is derived, and the stability analysis is conducted to determine the necessary8

conditions for stability for both non-isothermal and adiabatic cases. The result from the dispersion analysis based9

on the Abel-Ruffini theorem reveals that the roots of the characteristic polynomial for the thermo-hydro-mechanics10

problem can not be expressed algebraically. Meanwhile, the dispersion analysis on the adiabatic case leads to a new11

analytical expression of the internal length scale. Our limit analysis on the phase velocity for the non-isothermal case12

indicates that the internal length scale for the non-isothermal THM system may vanish at the short wavelength limit.13

This result leads to the conclusion that the rate-dependence introduced by multiphysical coupling may not regularize14

the THM governing equations when softening occurs. Numerical experiments are used to verify the results from the15

stability and dispersion analyses.16

Keywords thermo-hydro-mechanics, dynamic wave propagation, stability, dispersion, internal length scale,17

bifurcation18

1 Introduction19

Localization of deformation in solids occurs in many natural processes and engineering applications. Examples of20

localization of deformation include the formation of Lüder and Portevin-Le Chatelier (PLC) bands [14, 28] in metals21

and alloys, crack bands in concrete [5], and shear, compaction and dilation bands in sand, clay, ice and rocks [15, 33,22

44, 47, 48, 49]. For single-phase porous media under the static condition, the onset of strain localization is related to23

the loss of ellipticity, while the dynamics counterpart is due to the wave speed becoming imaginary [19, 21, 29, 30].24

These cases have been studied via stability and perturbation analyses in Hill [20, 21], which prove that perturbation25

grows instead of decays in unstable materials due to the ill-posedness of the governing equation. This ill-posedness26

of the governing equation, which can be triggered by strain softening and/or lack of normality [33], can lead to27

tremendous difficulty to replicate strain localization in computer simulations. One undesirable consequence is that the28

numerically simulated localization zones exhibit pathological dependence on the mesh size [4, 12, 23, 29, 34, 41, 43].29

As a result of this inherent mesh dependency, the size of mesh may affect the simulated post-bifurcation local and30

global responses, which do not converge upon mesh refinement [45, 46].31

To circumvent this mesh dependency, a material length scale must be introduced in the governing equation.32

Belytschko et al. [7] summarized a number of ways to introduce length scale and coined them localization limiters.33

These methods include introducing nonlocal or gradient based internal variables (e.g., [14, 16]), or higher-order34

continuum (e.g., [17, 18, 52]), and incorporating rate dependence in constitutive model (e.g. [25, 29]) to regularize35

the simulated responses after the onset of strain localization. This rate-dependent localization limiter is relevant to36
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many deformation-diffusion coupling processes in multiphase materials, as the transient diffusion process is likely37

to introduce rate dependence to the mechanical responses due to the coupling effect. The previous works, such as38

Schrefler et al. [35, 36], Zhang and Schrefler [52], Zhang et al. [54], analyze the rate-dependent effect in fluid-39

infiltrating porous solid via stability and dispersion analyses, and derive the inherent length scale as a function of40

permeability and viscosity of the fluid among other material parameters. Benallal and Comi [9], Zhang and Schrefler41

[52] and Abellan and de Borst [2] argue that while disperse effects are indeed observed in two-phase porous media,42

the physical length scale introduced via hydro-mechanical coupling effect vanishes at short wavelength limit.43

Nevertheless, the aforementioned stability and dispersion analyses are based on the assumptions that the porous44

media is under the isothermal condition and the thermal effect is negligible and decoupled from the hydro-mechanical45

processes. These assumptions are reasonable for numerous engineering applications in which thermal effect plays46

little role on the safety or efficiency of the operations. However, thermo-hydro-mechanical coupling effect is critical47

for various applications, such as geothermal energy piles [3], geological disposal of carbon dioxide and nuclear wastes48

[50], freezing-thawing of pavement systems [39], and landslide triggered by thermal induced creeping [51].49

To the best knowledge of the authors, there is no study concerning the thermo-hydro-mechanical coupling effect50

on the inherent length scale of porous media under non-isothermal condition. The purpose of this article is to fill51

this important knowledge gap. In particular, we apply the Routh-Hurwitz stability theorem to the THM governing52

equations and determine whether small perturbation can grow into localized instability and whether dispersive wave53

can propagate at finite wave speed in a thermal-sensitive softening porous media under the general non-isothermal54

condition and at the adiabatic limit. Our analysis indicates that the characteristic polynomial for the porous media55

under the general non-isothermal condition is of the fourth-order in the stability analysis, and of the sixth-order in56

the dispersion analysis. According to the Abel-Ruffini theorem (Abel’s impossibility theorem), a polynomial higher57

than the fifth-order has no general algebraic solution. As a result, we prove that it is impossible to express the internal58

length scale algebraically for the general non-isothermal case. On the other hand, under the adiabatic condition, we59

prove that the characteristic polynomial is reduced to the third-order for the dispersion analysis. Therefore, we derive60

the algebraic expression of length scale for this limit case and compare both new results with the previous works on61

isothermal porous media [2, 53, 54].62

The rest of the paper is organized as follows. We first perform the stability analysis for both general non-isothermal63

and adiabatic cases, and determine the onset of instability in Section 2.2. We then investigate the dispersive wave prop-64

agation in Section 2.3. In particular, we derive the phase velocity for the non-isothermal case at the long wavelength65

limit, and the vanishing of the physical internal length scale is observed at the short wavelength limit. For many66

thermo-hydro-mechanical coupling processes at very small time scale, the thermal conductivity of the porous media67

is negligible. For those adiabatic cases, we derive the simplified expression of the internal length scales and analyze68

the wave propagation speed during strain softening. In section 3, we conduct numerical experiments using an 1D69

dynamic THM finite element code to compare and validate the analytical derivation in Sections 2.2 and 2.3. Further-70

more, the influences of hydraulic properties (permeability) and thermal parameters (thermal conductivity and specific71

heat) on internal length scale and wave propagation behavior are evaluated for both non-isothermal and adiabatic72

cases, respectively. Finally, concluding remarks are given in Section 4.73

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single contraction of74

adjacent indices of two tensors (e.g. a · b = aibi or c · d = ci jd jk ); the symbol ‘:’ denotes a double contraction of75

adjacent indices of tensor of rank two or higher (e.g. C : εe = Ci jklε
e
kl); the symbol ‘⊗’ denotes a juxtaposition of two76

vectors (e.g. a⊗ b = aib j) or two symmetric second order tensors (e.g. (α ⊗β ) = αi jβkl). As for sign conventions,77

we consider the direction of the tensile stress and dilative pressure as positive.78

2 Stability and dispersion analyses79

In this section, the governing equations for the wave propagation of a one-dimensional softening bar composed of fully80

saturated porous media under the general non-isothermal and adiabatic conditions are introduced. We perform stability81

and dispersion analyses on both cases and obtain the corresponding characteristic polynomials. Then, we derive the82

explicit expression of phase velocity and determine the vanishing length scale under long and short wavelength limits83

for the non-isothermal condition. In the adiabatic condition, analytical derivations of the cutoff wavenumber and84

internal length scale are investigated for dynamic wave propagation in a two-phase porous medium. These new results85

are compared with the stability and dispersion analyses for isothermal porous media.86
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2.1 Model assumptions and governing equations87

The thermo-hydro-mechanical response of fluid infiltrating porous solids is governed by the balance principles, i.e.,88

the balance of linear momentum, mass and energy. Biot [11] formulated a general thermodynamics theory for non-89

isothermal porous media. McTigue [26] derived a field theory for the linear thermo-elastic response of fully saturated90

porous media. This model is extended in Coussy [13] to incorporate the structural heating effect. Belotserkovets and91

Prèvost [6] derived analytical solutions of an elastic fluid-saturated porous sphere subjected to boundary heating,92

prescribed pore pressure and flux. Selvadurai and Suvorov [37] analyzed the same thermo-hydro-mechanical problem93

of a spherical domain. By neglecting the heat generated and dissipated due to deformation of the solid skeleton and94

the flow convection of the porous spheres, the analytical solution of THM responses of the sphere composed of a95

fluid-saturated elasto-plastic material was derived and compared with finite element solution.96

In this study, we adopt the governing equations of Coussy [13] and Belotserkovets and Prèvost [6]. We assume that97

the strain is infinitesimal and that there is no mass exchange between the solid and fluid constituents. The gravitational98

body force and heat convection of among the constituents are neglected. Furthermore, we ignored the difference99

between the acceleration of the fluid and solid skeleton in Eq. (1) and Eq. (2) to simplify the analysis as previously100

done in Zhang et al. [54], Zienkiewicz et al. [55]. As a result, the governing equations of the linear momentum, the101

fluid mass balance and the energy balance read,102

∇ ·
(
σ
′−bp−βT

)
−ρ ü = 0, (1)

b∇ · u̇− k∇
2 p+

1
M

ṗ−3αmṪ = 0, (2)

ρcṪ −κ∇
2T +T0β∇ · u̇−3αmT0 ṗ = 0, (3)

where σ ′ is effective stress (nominal effective stress in Liu et al. [24]), p is pore pressure, T is temperature, u is103

displacement of solid skeleton, and b is the Biot’s coefficient. The mobility, k, is defined as k = ks/µ f = kperm/ρ f g,104

in which ks is the intrinsic permeability, µ f is the fluid viscosity, kperm is the permeability or hydraulic conductivity105

and g is the gravity acceleration. Furthermore, T0 is the reference temperature as defined in [6]. β is calculated as106

β = 3αsK, in which αs is the linear thermal expansion coefficient of solid, and K is the bulk modulus. Also, αm is107

described as, αm = (b− n)αs + bα f , including porosity n and the linear thermal expansion coefficient of fluid α f .108

Here, ρ = (1−n)ρs +nρ f , in which ρs and ρ f are solid and fluid mass densities, κ is the thermal conductivity, and109

cs,c f are the specific heats of solid and fluid. The Biot’s modulus is denoted as M, which is a function of the Biot’s110

coefficient b, porosity n, the bulk modulus of the solid grain Ks and that of the fluid constituent K f , i.e.,111

1
M

=
b−n

Ks
+

n
K f

. (4)

In this study, the volume-averaged specific heat of the constituents, ρc = (1− n)ρscs + nρ f c f , is considered to be112

specific heat of two-phase fluid-solid mixture. In addition, we assume that the temperature is at equilibrium locally113

and hence there is no temperature difference between the two constituents at the same material point. To simplify114

the stability and dispersion analyses, we limit our attention to a one-dimensional dynamic thermo-hydro-mechanics115

boundary value problem.116

2.2 Stability analysis117

In this section, we analyze stability of a one-dimensional wave propagation in a thermal-sensitive fluid-saturated118

porous media. Our goal here is to determine the necessary and sufficient conditions to maintain stability of the thermo-119

hydro-mechanical system in the generalized non-isothermal case and at the adiabatic limit. Our results are compared120

with the previous analyses on isothermal porous media. In particular, we apply the Routh-Hurwitz stability theorem to121

the characteristic equations of the general non-isothermal and adiabatic THM systems. The Routh-Hurwitz criterion122

enables us to determine whether it is possible that the solution of characteristic equation can have a real and positive123

part, which in return implies that homogeneous state is unstable and a small perturbation may grow [14].124
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2.2.1 Non-isothermal case125

To investigate the stability of an equilibrium state, we apply a harmonic perturbation with respect to an incremental126

axial displacement, pore pressure and temperature. For an infinite one-dimensional thermo-sensitive porous medium127

initially in a homogeneous state, the solution of displacement, pore pressure and temperature in space-time (x, t) may128

take the following form,129 du
d p
dT

=

Au
Ap
AT

ei(kwx−ωt) = Aeikwx+λ t , λ =−iω, (5)

where kw is the wavenumber, ω the angular frequency, and λ eigenvalue. Au, Ap and AT are the amplitudes of the130

displacement, pore pressure and temperature perturbations, respectively. Following the approach in Zhang et al. [54]131

and Abellan and de Borst [2], we use an incremental linear constitutive model to relate the infinitesimal change of the132

nominal effective stress and that of the total strain for the one-dimensional THM problem, i.e.,133

σ̇
′ = Et

∂ u̇
∂x

= Et ε̇, (6)

where Et is the tangential stiffness modulus of the solid (cf. Abellan and de Borst [2]). The relations among the134

one-dimensional total stress σ , Biot’s effective stress σ ′′ and the nominal effective stress σ ′ are [24],135

σ̇ = σ̇
′′−bṗ = σ̇

′−β Ṫ −bṗ. (7)

The spatial derivative of the incremental nominal effective stress equation (6) gives,136

∂ σ̇ ′

∂x
=−EtAuk2

w exp(ikwx+λ t). (8)

The substitution of Eq. (5) into Eqs. (1) to (3) therefore gives,137

−Etk2
wAu− i(bkw)Ap− i(βkw)AT −ρλ

2Au = 0, (9)

i(bkwλ )Au + kk2
wAp +M−1

λAp−3αmλAT = 0, (10)

ρcλAT +κk2
wAT + i(T0βkwλ )Au−3αmT0λAp = 0. (11)

A non-trivial solution to this set of homogeneous equations exists if and only if the following relation holds,138 ∣∣∣∣∣∣
−Etk2

w−ρλ 2 −i(bkw) −i(βkw)
i(bkwλ ) kk2

w +M−1λ −3αmλ

i(T0βkwλ ) −3αmT0λ ρcλ +κk2
w

∣∣∣∣∣∣= 0, (12)

which can be rewritten as shown below,139

(−Etk2
w−ρλ

2)
[
(kk2

w +M−1
λ )(ρcλ +κk2

w)− (−3αmλ )(−3αmT0λ )
]

+i(bkw)
[
i(bkwλ )(ρcλ +κk2

w)− (−3αmλ )(i(T0βkwλ ))
]

−i(βkw)
[
i(bkwλ )(−3αmT0λ )− (kk2

w +M−1
λ )(i(T0βkwλ ))

]
= 0. (13)

Expanding Eq. (13) yields,

− 1
M

ρ
2cλ

4 +9α
2
mρT0λ

4− 1
M

ρκk2
wλ

3−ρ
2ckk2

wλ
3

− 1
M

ρcEtk2
wλ

2−ρcb2k2
wλ

2−ρκkk4
wλ

2− 1
M

β
2T0k2

wλ
2−6αmβbT0k2

wλ
2 +9Etα

2
mT0k2

wλ
2

− 1
M

Etκk4
wλ −b2

κk4
wλ −ρcEtkk4

wλ −β
2kT0k4

wλ −Etkκk6
w = 0, (14)

in which the terms in Eq. (14) are rearranged in descending order for eigenvalue, λ . Simplifying the expression of Eq.140

(14) yields (M 6= 0),141
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ρ(ρc−9α
2
mT0M)λ 4 +ρ(κ +ρckM)k2

wλ
3

+(ρcEt +ρcb2M+ρκkMk2
w +β

2T0 +6αmβbT0M−9Etα
2
mT0M)k2

wλ
2

+(Etκ +b2
κM+ρcEtkM+β

2kT0M)k4
wλ +EtkκMk6

w = 0. (15)

After rearranging Eq. (15), the characteristic equation is a forth-order polynomial that reads,142

a4λ
4 +a3λ

3 +a2λ
2 +a1λ +a0 = 0, (16)

with the following real coefficients,

a4 = ρ(ρc−9α
2
mT0M), (17)

a3 = ρ(κ +ρckM)k2
w, (18)

a2 = (ρcEt +ρcb2M+ρκkMk2
w +β

2T0 +6αmβbT0M−9Etα
2
mT0M)k2

w, (19)

a1 = (Etκ +b2
κM+ρcEtkM+β

2kT0M)k4
w, (20)

a0 = EtkκMk6
w. (21)

According to the Routh-Hurwitz stability criterion, the stability of the governing equations is maintained if and143

only if all the solutions of characteristic polynomial have negative real part [22, 32]. For the fourth-order polynomial144

shown in Eq. (16), the necessary condition to satisfy the Routh-Hurwitz stability criterion is to have the coefficients145

listed in Eqs. (17) to (21) hold the following properties,146

an > 0, a3a2 > a4a1, and a3a2a1 > a4a2
1 +a2

3a0 ,where n = 0,1,2,3,4. (22)

We first examine Eq. (22)1, which requires all coefficients ai, i = 0,1,2,3,4, to be strictly positive. Notice that these147

coefficients are all the functions of the material parameters that characterize the mechanical, hydraulic and thermal148

responses of porous media. As a result, one may deduce the necessary condition to satisfy Eq. (22)1 by examining the149

physical meaning and the possible ranges of the material parameters. Here we categorize the material parameters into150

three groups – strictly positive, non-negative, and real number (which can be negative, zero or positive). Among these151

three groups, we first assume that the total density ρ , specific heat c, Biot’s modulus M and Biot’s coefficient b are all152

strictly positive and hence greater than zero. Meanwhile, the mobility k, thermal conductivity κ , thermal expansion153

coefficient αm and the reference temperature T0 are assumed to be non-negative (if the temperature unit is Kelvin).154

Finally, the tangential stiffness Et can be both positive, negative or zero, as summarized in Table 1.155

Parameter Description Range

ρ Total Density R+

c Specific Heat R+

M Biot’s Modulus R+

b Biot’s Coefficient (0,1]
k Mobility [0,∞)
κ Thermal Conductivity [0,∞)
α Thermal Expansion Coefficient [0,∞)
T0 Reference Temperature [0,∞)
Et Tangential Modulus R

Table 1: Assumptions on range of the material properties of thermo-sensitive porous media.

With the aforementioned assumptions in mind, we notice that a0, a1 and a3 may all become non-positive when156

both thermal conductivity and permeability of the material become zero. This result indicates that the wave propagat-157

ing in non-isothermal porous medium may lose stability at the undrained limit even though there is no softening. At158
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the adiabatic limit, we found that one of the roots of the characteristic polynomial is zero and at least one of the root159

may have a positive real part if at least one of the four conditions listed at the end of section 2.2.2 is met. On the other160

hand, a4 is greater than zero if both solid and fluid constituents do not exhibit thermal expansion such that αm = 0.161

However, to maintain stability, the specific heat must be large enough such that c > 9α2
mT0M/ρ . In other words, from162

a theoretical standpoint, it is possible for the THM governing equations to lose stability if the fluid and solid con-163

stituents are both nearly incompressible but the porous medium is vulnerable to significant thermal expansion (e.g.164

marine clay). This indicates that material softening is not the only indicator that detects the loss of stability in the165

THM problem. Furthermore, a necessary and sufficient condition for a0 > 0, a1 > 0 and a2 > 0 is to have Et > 0, i.e.,166

no softening occurring. A few algebraic operations reveal that,167

a2 > 0 implies that Et >
−ρcb2M−ρκkMk2

w−β 2T0−6αmβbT0M
ρc−9α2

mT0M
, (23)

a1 > 0 implies that Et >
−b2κM−β 2kT0M

κ +ρckM
. (24)

Since the stability condition also requires a4 > 0 and hence ρc− 9α2
mT0M > 0, both (23) and (24) would not be168

violated unless softening occurs (i.e. Et < 0). Meanwhile, the explicit expression of a3a2 > a4a1 reads,169

kκ
2Mρ

2k6
w +b2c2kM2

ρ
3k4

w + ck2
κM2

ρ
3k6

w +β
2
κρT0k4

w +6αmbβκMρT0k4
w

+9α
2
mb2

κM2
ρT0k4

w +6αmbβckM2
ρ

2T0k4
w +9α

2
mβ

2kM2
ρT 2

0 k4
w > 0, (25)

which can be expressed as below,170

ρk4
w
[
ρ

2ck2
κM2k2

w +κT0(β +3bαmM)2 + kM(ρκ
2k2

w +M(bρc+3βαmT0)
2)
]
> 0. (26)

Condition (26) always holds if the wavenumber is real, either the permeability or the thermal conductivity is non-zero171

and the rest of the material parameters are strictly positive. Finally, a3a2a1 > a4a2
1 +a2

3a0 can be expanded as,172

b2kκ
3M2

ρ
2k10

w +b2c2EtkκM2
ρ

3k8
w +b4c2kκM3

ρ
3k8

w +b2ck2
κ

2M3
ρ

3k10
w +b2c3Etk2M3

ρ
4k8

w

+β
2Etκ

2T0ρk8
w +b2

β
2
κ

2MT0ρk8
w +6αmbβEtκ

2MT0ρk8
w +6αmb3

βκ
2M2T0ρk8

w

+9α
2
mb2Etκ

2M2T0ρk8
w +9α

2
mb4

κ
2M3T0ρk8

w +β
2cEtkκMT0ρ

2k8
w +12αmbβcEtkM2T0κρ

2k8
w

+β
2k2

κ
2M2T0ρ

2k10
w +6αmb3

βckκM3T0ρ
2k8

w +9α
2
mb2cEtkκM3T0ρ

2k8
w +b2

β
2c2k2M3T0ρ

3k8
w

+6αmbβc2Etk2M3T0ρ
3k8

w +β
2ck3

κM3T0ρ
3k10

w +β
4kκMT 2

0 ρk8
w +6αmbβ

3kκM2T 2
0 ρk8

w

+9α
2
mβ

2EtkκM2T 2
0 ρk8

w +18α
2
mb2

β
2kκM3T 2

0 ρk8
w +6αmbβ

3ck2M3T 2
0 ρ

2k8
w

+9α
2
mβ

2cEtk2M3T 2
0 ρ

2k8
w +9α

2
mβ

4k2M3T 3
0 ρk8

w > 0, (27)

which can be further simplified as,

Etρk8
w(κ +ρckM)

[
6αmbβMT0(κ +ρckM)+b2M2(ρ2c2k+9α

2
mκT0)+β

2T0(κ +9α
2
mkM2T0)

]
+ρk8

wM(b2
κ +β

2kT0)
[
ρ

2ck2
κM2k2

w +κT0(β +3αmbM)2 + kM(κ2
ρk2

w +M(ρcb+3αmβT0)
2)
]
> 0. (28)

In other words, a3a2a1 > a4a2
1 +a2

3a0 implies that,

Et >
−M(b2κ +β 2kT0)

[
ρ2ck2κM2k2

w +κT0(β +3αmbM)2 + kM(κ2ρk2
w +M(ρcb+3αmβT0)

2)
]

(κ +ρckM) [6αmbβMT0(κ +ρckM)+b2M2(ρ2c2k+9α2
mκT0)+β 2T0(κ +9α2

mkM2T0)]
, (29)

which would not be violated unless softening occurs (i.e. Et < 0) as the above Eqs. (23) and (24).173

As a result, the THM governing equations may fail the Routh-Hurwitz criterion if at least one of the following174

situations happens:175

1. Softening occurs such that Et < 0.176

2. Both permeability and thermal conductivity of the porous media become zero.177

3. Specific heat c≤ 9α2
mT0M/ρ .178
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2.2.2 Adiabatic case179

The stability analysis conducted in the previous section can be significantly simplified by assuming that the entire180

one-dimensional bar is in the adiabatic or isothermal condition. While the latter case has been extensively studied181

in the past (cf. Abellan and de Borst [2], Zhang and Schrefler [52, 53], Zhang et al. [54]), the stability analysis of182

adiabatic porous media has not yet been established. For many engineering applications in which high-rate and shock183

responses are of interest, it is reasonable to assume that the thermal conductivity is negligible. In those cases, we may184

derive the characteristic equation for the adiabatic condition by assuming the thermal conductivity to be zero, κ ≈ 0.185

As a result, the characteristic equation of the adiabatic THM system reads,186 ∣∣∣∣∣∣
−Etk2

w−ρλ 2 −i(bkw) −i(βkw)
i(bkwλ ) kk2

w +M−1λ −3αmλ

i(T0βkwλ ) −3αmT0λ ρcλ

∣∣∣∣∣∣= 0, (30)

which can be rewritten as shown below,

(−Etk2
w−ρλ

2)
[
(kk2

w +M−1
λ )ρcλ − (−3αmλ )(−3αmT0λ )

]
+i(bkw) [i(bkwλ )ρcλ − (−3αmλ )(i(T0βkwλ ))]

−i(βkw)
[
i(bkwλ )(−3αmT0λ )− (kk2

w +M−1
λ )(i(T0βkwλ ))

]
= 0. (31)

Expanding Eq. (31) yields,

− 1
M

ρ
2cλ

4 +9ρα
2
mT0λ

4−ρ
2ckk2

wλ
3

− 1
M

ρcEtk2
wλ

2−ρcb2k2
wλ

2− 1
M

β
2T0k2

wλ
2−6αmβbT0k2

wλ
2 +9Etα

2
mT0k2

wλ
2

−ρcEtkk4
wλ −β

2kT0k4
wλ= 0, (32)

which can be rewritten as,

− 1
M

λ
[
ρ(ρc−9α

2
mT0M)λ 3 +ρ

2ckMk2
wλ

2

+(ρcEt +ρcb2M+β
2T0 +6αmβbT0M−9Etα

2
mT0M)k2

wλ

+(ρcEt +β
2T0)kMk4

w
]
= 0. (33)

This equation can be expressed into a more compacted form that reads (M 6= 0),187

b3λ
4 +b2λ

3 +b1λ
2 +b0λ = 0 or (b3λ

3 +b2λ
2 +b1λ +b0)λ = 0, (34)

where the expressions of the coefficients are,

b3 = ρ(ρc−9α
2
mT0M), (35)

b2 = ρ
2ckMk2

w, (36)

b1 = (ρcEt +ρcb2M+β
2T0 +6αmβbT0M−9α

2
mEtT0M)k2

w, (37)

b0 = (ρcEt +β
2T0)kMk4

w. (38)

At the adiabatic limit, the vanishing of the Laplacian term in the balance of energy equation leads to a fourth-order188

characteristic polynomial Eq. (34) of which one of the roots is obviously zero (λ = 0). This root represents a neutrally189

stable condition in which perturbation neither grows (which requires a positive real part) or decay (which requires a190

negative real part) [14]. To determine whether perturbation may grow, we examine the rest of the roots corresponding191

to Eq. (34) and analyze the ranges of material parameters that lead to at least one root having a positive real part (and192

hence causes a perturbation to grow). Note that the coefficients bi, i = 0,1,2,3 in Eq. (34) are either functions of an193

exponentiation of the wavenumber of a particular order, i.e., k2
w, k4

w, or independent of kw. Furthermore, each coeffi-194

cient does not depend on the exponentiation of the wavenumber with multiple orders as a2 in Eq. (19). This feature195

allows one to derive the cutoff wavenumber, which provides the range of wavenumbers where wave propagation is196

possible in the adiabatic porous media.197
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Now apply the Routh-Hurwitz stability criterion to the polynomial corresponding to the non-zero roots, i.e.,198

b3λ 3 +b2λ 2 +b1λ +b0 = 0. The necessary condition to satisfy the Routh-Hurwitz stability criterion reads,199

bn > 0 and b2b1 > b3b0 ,where n = 0,1,2,3, (39)

where b2b1−b3b0 > 0 can be written as,200

ρkM2 (ρcb+3αmβT0)
2 k4

w > 0. (40)

This condition holds when the mobility k is positive. In analogy to the general non-isothermal case, we can identify201

the necessary condition that leads to instability. The loss of stability may appear if one of the following criteria is met:202

1. Mobility k = 0, in which case b0 and b2 are both equal to 0.203

2. Tangential modulus Et ≤−(β 2T0/ρc) leads to b0 ≤ 0.204

3. Tangential modulus Et ≤−(ρcb2M+β 2T0 +6αmβbT0M)/(ρc−9α2
mT0M) leads to b1 ≤ 0.205

4. Specific heat c≤ 9α2
mT0M/ρ so that b3 ≤ 0.206

207

Remark 1208

Notice that in many THM formulations, such as Selvadurai and Suvorov [37] and Selvadurai and Suvorov [38], the209

work done or energy dissipation of the fluid and solid constituents are assumed to be negligible in the balance of210

energy equation. In this case, the energy balance equation, Eq. (3), may be simplified as,211

Ṫ − κ

ρc
∂ 2T
∂x2 = 0. (41)

Hence, the mechanical and hydraulic responses are only one-way coupled with the heat transfer process. While the212

temperature changes may still cause deformation and/or flow, Eq. (41) indicates that neither deformation of the solid213

skeleton or the pore-fluid flow may impose any influence on the temperature due to the simplified assumptions. In this214

special case, the characteristic equation reads,215 ∣∣∣∣∣∣
−Etk2

w−ρλ 2 −i(bkw) −i(βkw)
i(bkwλ ) kk2

w +M−1λ −3αmλ

0 0 ρcλ +κk2
w

∣∣∣∣∣∣= 0. (42)

In the one-way coupling THM formulations, the characteristic equation will have two roots identical with those in the216

fully saturated isothermal condition [2, 53, 54], while the additional root is λ =−κk2
w/(ρc) which is either equal to217

zero (when κ = 0) or negative (when κ is positive). In other words, if the thermal conductivity is non-zero, then the218

governing equations of the one-way coupling THM system and the isothermal THM system share the same necessary219

and sufficient conditions for stability.220

2.3 Dispersion analysis221

Even if stability is lost, numerical simulations may still continue and give meaningful results as pointed out by Abellan222

and de Borst [2]. However, when the THM problem becomes ill-posed, the physical length scale inferred from the223

physical properties vanishes and a numerical length scale, which is often the mesh size, may influence the numerical224

solutions and cause mesh dependency.225

The dispersion analysis provides a tool to predict the vanishing of finite non-zero physical wavelength by checking226

whether the associated cutoff wavenumber or damping factor can be identified. Recall that a wave is considered227

dispersive if the phase velocity (or wave velocity, vp) depends on the wavenumber [2, 8, 9, 10, 31, 40, 52, 53, 54]. In228

this case, the waves of different wavelengths travel at different phase velocities and hence the shape of a dispersive229

wave may change as it propagates [42]. To capture localization of deformation properly, governing equation must be230

able to change the shape of an arbitrary loading wave into a stationary wave in a localization zone [2, 41]. It is well231

known that wave propagation in the standard single-phase continuum upon the occurrence of strain softening is not232

dispersive, and hence the mesh dependency is observed [2, 14].233

In this section, our objectives are to (1) investigate whether a dispersive wave can propagate at the long and short234

wavelength limits in the non-isothermal case, and (2) examine the cutoff wavenumber and internal length scale when235

strain softening at the adiabatic limit.236
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2.3.1 Non-isothermal case237

We assume that the solution of the governing equations of a damped, harmonic wave propagating in a thermo-sensitive238

fully saturated two-phase porous media takes the following form:239 du
d p
dT

=

Au
Ap
AT

ei(kwx−ωt) = Aeλrt+i(kwx−ωt), (43)

where Au, Ap and AT are the amplitudes of the displacement, pore pressure and temperature accordingly. In the240

dispersion analysis, we split the possible complex eigenvalue into real part (λr) and imaginary party (ω or λi) as241

λ = λr− iω . According to Zhang et al. [54] and the dispersion analysis of adiabatic case below, the cutoff wavenumber242

can be derived using the discriminant of cubic polynomial of eigenvalue when the same order of wavenumber term243

exists in each coefficient of the characteristic equation (e.g. Eq. (34)). However, in the characteristic equation of244

non-isothermal condition (Eq. (16)), the coefficient a2 has two different orders of wavenumber (k2
w and k4

w) and245

the derivation of discriminant of quartic polynomial cannot give the explicit expression of wavenumber having the246

complex conjugate roots. Nevertheless, we may still determine the relation between the phase velocity and the real247

and imaginary parts of the eigenvalue by substituting λ = λr− iω into Eq. (16). This process, based on Abellan and248

de Borst [2], decomposes the characteristic equation into real and imaginary parts as follows,249

a4λ
4
r +a3λ

3
r +a2λ

2
r +a1λr +a0−a2ω

2−3a3λrω
2−6a4λ

2
r ω

2 +a4ω
4

+i(−a1ω−2a2λrω−3a3λ
2
r ω−4a4λ

3
r ω +a3ω

3 +4a4λrω
3) = 0. (44)

The imaginary part of Eq. (44) vanishes if the following condition holds,250

ω = 0 or ω
2 =

4a4λ 3
r +3a3λ 2

r +2a2λr+a1

4a4λr +a3
. (45)

For the dispersion analysis of dynamic governing equations, we can assume ω 6= 0 and take the condition of Eq.251

(45)2. By considering the coefficients ai, i = 0,1,2,3,4 of Eqs. (17) to (21), we know that ω is expressed in terms252

of wavenumber (kw), and the relation of phase velocity (vp = ω/kw) and wavenumber can be derived (Appendix A).253

Since the phase velocity is dependent on the wavenumber, we can find out that the wave propagation is dispersive.254

Furthermore, by substituting Eq. (45)2 into Eq. (44), the equation of real part of eigenvalue λr can be expressed as255

shown below,256

[
64a3

4λ
6
r +96a3a2

4λ
5
r +(48a2

3a4 +32a2a2
4)λ

4
r +(8a3

3 +32a2a3a4)λ
3
r

+(8a2a2
3 +4a2

2a4 +4a1a3a4−16a0a2
4)λ

2
r +(2a2

2a3 +2a1a2
3−8a0a3a4)λr

+a1a2a3−a0a2
3−a2

1a4
]
/(16a2

4λ
2
r +8a4a3λr +a2

3) = 0. (46)

Unfortunately, as proven by the Abel-Ruffini theorem (also referred as the Abel’s impossibility theorem [1]), there257

exists no general algebraic solution in radicals to polynomials of degree five or higher with arbitrary coefficients. In258

other words, there is no general formula that allows the real part of eigenvalue λr to be expressed algebraically,259

even though it is still possible to solve Eq. (46) numerically. However, we can estimate λr by taking long and short260

wavelength limits considering the coefficients ai, i = 0,1,2,3,4 and Eqs. (45) to (46).261

Firstly, we found that taking the long wavelength limit, i.e. kw→ 0, yields the eigenvalue λr → 0 in Eq. (46). As262

demonstrated in Abellan and de Borst [2], this result leads to the relation of phase velocity and wavenumber according263

to Eq. (45)2. Therefore, we can explicitly derive the phase velocity for the long wavelength limit as shown below.264

vp =

√
Etκ +b2κM+ρcEtkM+β 2kT0M

ρ(κ +ρckM)
=

√
Et

ρ
+

b2κM
ρ(κ +ρckM)

+
β 2T0kM

ρ(κ +ρckM)
. (47)

We can further observe that the phase velocity of Eq. (47) is reduced to the classical bar velocity, vp =
√

Et/ρ , when265

thermal effects are ignored and the fluid is removed (or simply, when κ and k are ignored). Fig. 1 shows how the266
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Fig. 1: Phase velocity vs. permeability with different thermal conductivities (With Et = 30 MPa, ρc = 4.5 kJ/m3/◦C,
M = 200 MPa and T0 = 20 ◦C).

phase velocity changes depending on the thermal conductivity and permeability (or mobility k), where the material267

properties are selected from the previous studies (Sun [45], Zhang et al. [54]). When the thermal conductivity is given,268

for example κ = 2.5× 10−3kW/m/◦C, the phase velocity does not change until the permeability decreases below269

kperm ≈ 1.0× 10−6 m/s. Besides, when the permeability is further decreased and beyond the range, 1.0× 10−8 <270

kperm < 1.0× 10−6 (m/s), additional response from the phase velocity is not observed. In other words, the phase271

velocity of the THM system can be influenced by how the permeability and thermal conductivity are combined, but272

the effect is limited.273

For the short wavelength limit, i.e. kw → ∞, we can estimate that λr ∼ k10
w from Eq. (46) and the wave velocity274

becomes proportional to the wavenumber, vp ∼ kw, from Eq. (45). By adopting the relation of the internal length scale275

and damping coefficient from a single-phase rate-dependent medium [42], the internal length scale (l) is defined as276

follows:277

l = lim
kw→∞

(
−

vp

λr

)
∼ lim

kw→∞
k−9

w = 0. (48)

This means that the internal length scale vanishes at the short wavelength limit. The loss of physical internal length278

scale also suggests that any grid-based numerical model that solves the THM governing equations may exhibit mesh279

dependency, as any regularization effect induced by multi-physical coupling may vanish if the physical length scale280

vanished.281

In other words, the rate-dependence introduced through multiphysical coupling may not regularize the THM282

governing equations when softening occurs. This conclusion echoes the previous dispersion analysis of isothermal283

two-phase porous media by Abellan and de Borst [2], which also indicates that the internal length scale vanishes at284

the short wavelength limit. The wave propagation behavior of non-isothermal condition when strain softening occurs285

is further evaluated by numerical experiments in Section 3.2.286

For the adiabatic case, we derived the internal length scale of the adiabatic THM system within a limited range287

of wavenumbers by expanding the derivation for isothermal porous system in Zhang et al. [54]. In addition, we288

conducted parametric studies to analyze how the specific heat and permeability may affect the cutoff wavenumber289

and the corresponding internal length scale.290

2.3.2 Adiabatic Case291

By assuming that the thermal conductivity is approximately zero, we obtained the characteristic equation of a damped292

harmonic wave propagating in a porous medium at the adiabatic limit. Based on the derivations in Section 2.2.2,293

we conducted a dispersion analysis and derive the expression of the internal length scale when the porous medium294
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remains at the adiabatic limit. Our starting point is the third-order characteristic polynomial, which takes the following295

form,296

D(λ ) = λ
3 +aλ

2 +bλ + c = 0, (49)

where,

a = a0y, a0 =
ρckM

ρc−9α2
mT0M

, (50)

b = b0y, b0 =
ρcEt +ρcb2M+β 2T0 +6αmβbT0M−9α2

mEtT0M
ρ(ρc−9α2

mT0M)
, (51)

c = c0y2, c0 =
(ρcEt +β 2T0)kM
ρ(ρc−9α2

mT0M)
, (52)

y = k2
w. (53)

When strain softening occurs, the tangential modulus Et becomes negative. In this case, waves propagating in the297

porous medium can be either dispersive or non-dispersive, depending on the wavenumber kw.298

Our objective here is to determine whether it is possible to propagate waves with finite speed when stability of the299

THM system has already been lost. Recall that the stability analysis in Section 2.2.2 indicates loss of stability when300

either one of the following conditions holds , i.e., (1) Et <−(β 2T0/ρc), (2) c > 9α2
mT0M/ρ , (3) k = κ = 0. Here, we301

assume that the permeability is non-zero and focus our attention only on the cases in which condition (1) and (2) hold.302

Furthermore, we assume that the softening tangential modulus Et >−b2M always holds [20, 54]. In other words, our303

objective is to determine whether the roots of the characteristic polynomial contain positive real part for the special304

case where the following condition holds,305

−b2M < Et <−β
2T0/ρc , c > 9α

2
mT0M/ρ , k > 0. (54)

Given the condition expressed above, we conclude that at least one of the roots has a positive real part. This is306

due to the fact that Et < −β 2T0/ρc implies that ρcEt + β 2T0 < 0, which in return leads to D(0) < 0. Meanwhile,307

limx→∞ D(x)> 0, as the characteristic polynomial of Eq. (49) is monic. According to the intermediate value theorem308

(or more specifically Bolzano’s theorem, cf. [27]), the two aforementioned conditions combining the fact that the309

polynomial with real coefficients is continuous imply that Eq. (49) has at least one root with positive real part. Thus,310

there are two possible sets of solutions of D(λ ): (1) one positive real root and a pair of complex conjugate roots, (2)311

three real roots in which at least one is positive. As discussed in Zhang et al. [54], the first case enables waves to312

propagate by remaining the governing equations to be hyperbolic under strain softening condition. In the second case,313

however, the wave speed becomes imaginary which leads the dynamic governing equations to be elliptic: the finite314

element analysis will show mesh dependency [54]. Therefore, we evaluate the cubic polynomial of Eq. (49) to have315

one real root and a pair of complex conjugate roots by considering that the discriminant (denoted as, 4) should be316

less than zero. According to Eqs. (49) to (53), the discriminant of cubic function can be expressed as,317

4=−4b03
y3 +a02

b02
y4 +18a0b0c0y4−27c02

y4−4a03
c0y5. (55)

This expression can be rewritten in terms of coefficients, w,r and s, i.e.,318

4=−y3(wy2 + ry+ s), (56)

where,

w = 4a03
c0, (57)

r = 27c02−a02
b02−18a0b0c0, (58)

s = 4b03
. (59)

To keep the discriminant (4) negative, we note that the quadratic polynomial of wy2 + ry+ s in Eq. (56) should be319

always positive. Under the given condition in Eq. (54), we know that the coefficient w becomes negative since c0 is320

negative and a0 is positive. Besides, we can find out that s becomes positive since b0 is come to be positive as proved in321

Appendix B. Therefore, we can derive the only positive root of wy2 + ry+ s = 0 in the form of (−r−
√

r2−4ws)/2w322
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(a) Cutoff wavenumber vs. Permeability (ρc = 4.5kJ/m3/◦C) (b) Cutoff wavenumber vs. Specific Heat (kperm = 1.0×10−3 m/s)

Fig. 2: Relationship of the cutoff wavenumber with permeability and specific heat under adiabatic condition

based on the fact that w < 0 and s > 0. In other words, this makes Eq. (56) be always negative (4 < 0) when the323

square of the wavenumber y (= k2
w) is within the range described as follows:324

0 < y <
−r−

√
r2−4ws

2w
(= k2

w,cut). (60)

The cutoff wavenumber (kw,cut ) as a function of the permeability or mobility (k), specific heat (ρc), tangential modulus325

(Et ), reference temperature (T0) and other material properties of porous media has also been sought in this study. Due326

to the length of the derivation, the step-by-step derivation that leads to the expression of the cutoff wavenumber is327

provided in Appendix B. Meanwhile, the influences of the permeability and specific heat on the cutoff wavenumber328

are depicted in Fig. 2. The reciprocal of permeability shows a linear relation to the cutoff wavenumber in log-log329

plane, however, the specific heat shows limited effect until it reaches to 1.0. In this regard, we can find out that the330

permeability is closely related to the cutoff wavenumber while the specific heat has little influence on it.331

Within the range of cutoff wavenumber, three roots (one real and two complex conjugate roots) of the third-order332

characteristic equation can be determined by Cardano’s formula. By letting λ = z− a
3 , the third-order polynomial Eq.333

(49) can be rewritten as,334

z3 + pz+q = 0, (61)

where,335

p =
1
3
(3b−a2), q =

1
27

(2a3−9ab+27c). (62)

This equation has three roots that take the following forms,336

z1 = A+B, z2,3 =−
A+B

2
± i
√

3
2

(A−B), (63)

where,337

A =
3

√
−q

2
+

√
q2

4
+

p3

27
, B =

3

√
−q

2
−
√

q2

4
+

p3

27
. (64)

Therefore, we can rewrite the solution λ as follows,338

λ1 = (A+B)− a
3
, λ2,3 =−

A+B
2

+
i
√

3
2

(A−B)− a
3
, (65)

and distinguish the real part and imaginary part in the roots:339

λr =−
1
2
(A+B)− a

3
, λi =

√
3

2
(A−B). (66)
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Fig. 3: Damping coefficient (α) vs. Normalized wavenumber.

By substituting the complex root into the damped harmonic equation like we did before in Eq. (43), we have (note340

that λi = ω):341

v(x, t) = Aeikwxeλrt−iωt = Aeikwxeλrt−iλit , v = [u, p,T ]T . (67)
Recall the relation between the phase velocity vp and the wavenumber kw,342

vp =
|λi|
kw

. (68)

By means of t = x/vp, the damping term e(λr)t changes into ekw((λr)/|λi|)x = e−αx, where α is the damping coefficient343

[54]. Notice that the thermo-hydro-mechanical coupling introduces rate dependence to the mechanical response, even344

if the solid phase continuum does not exhibit any viscous behavior. As a result of this rate dependence, the internal345

length scale l is introduced, i.e.,346

l = α
−1, α =− λr

|λi|
kw, (69)

in which λr and λi are obtained from Eq. (66). It is obvious that the definition of internal length scale holds only for347

dynamic analysis. The damping coefficient α and the internal length scale l can be expressed as below:348

α =

∣∣A+B+ 2
3 a
∣∣kw√

3(A−B)
, l =

√
3(A−B)∣∣A+B+ 2

3 a
∣∣kw

. (70)

Therefore, we can identify the internal length scale as a function of the mobility (k), specific heat (ρc), wavenumber349

(kw), reference temperature (T0), tangential modulus under strain softening (Et ) and other material properties as:350

l = f (k,ρc,kw,Et ,M,β ,αm,T0) . (71)

For brevity, the expression of the internal length scale is described in details in the Appendix C.351

352

Remark 2353

In the adiabatic condition, we derived the cutoff wavenumber which guarantees the wave propagation is possible.354

Within this range, we can analyze how the damping coefficient changes along the wavenumber by normalizing it with355

the cutoff wavenumber in Fig. 3.356

In this figure, we can see that the damping coefficient (α) approaches zero when the wavenumber decreases,357

which is natural phenomenon considering the definition of α . On the other hand, the damping coefficient approaches358

to infinity when the wavenumber converges to the cutoff value, which states that the internal length scale, a reciprocal359

of α , vanishes. This fact is also analogous to the case of long wavelength limit under the non-isothermal condition,360

Eq. (48). The effect of permeability (or mobility, k) and specific heat (ρc) of porous media on the internal length scale361

is compared in Fig. 4. We can see that the permeability has proportional relation to the internal length scale while the362

specific heat has limited effect.363
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(a) Internal length scale vs. Permeability (ρc = 4.5kJ/m3/◦C) (b) Internal length scale vs. Specific Heat (kperm = 1.0×10−3 m/s)

Fig. 4: Relationship of the internal length scale with the permeability and specific heat under the adiabatic condition

3 Numerical Experiments364

To illustrate the influences of thermo-hydro-mechanical coupling on the width of localization zone, we use an implicit365

dynamic finite element code to simulate one-dimensional wave propagation in a thermo-sensitive fully saturated366

porous bar with different set of material parameters. Our objective here is to use the numerical experiments to (1)367

verify the theoretical analysis on the phase velocity and internal length scales in Section 2.2 and (2) confirm whether368

mesh dependency occurs when the physical internal length scale is predicted to be vanished according to Eqs. (48)369

and (71).370

As mentioned previously in Section 2.3.1, we did not obtain the expression of internal length scale for the non-371

isothermal condition, as the general algebraic expression of the internal length scale does not exist according to the372

Abel-Ruffini theorem [1]. As a result, we first limit our focus on the adiabatic condition and performed numerical373

experiments to validate the analytical expression of the internal length scale. We then analyze the simulated wave374

propagation behavior of the non-isothermal condition with a series of numerical simulations under the different ther-375

mal conductivities. The changes of wave propagation behaviors observed in the numerical simulations due to changes376

of the thermal conductivity are also compared. We found that the observed behavior is consistent with the phase377

velocity expressed in Eq. (47).378

The numerical model consists of a softening bar constrained to move in only one direction. In addition, heat379

transfer and pore-fluid diffusion are also confined to be one-dimensional. The length of the bar is 10 m. At x = 0 m,380

the bar is fixed and has zero displacement, while a perturbation of force is applied at x = 10 m. Both pore pressure381

and temperature are prescribed as zero at x = 10 m. A constant time step 4t = 1.0× 10−2 sec. is used to all the382

numerical simulations. The absolute mass densities of soil and fluid are selected as ρs = 2,700 kg/m3 and ρ f = 1,000383

kg/m3. The elastic and tangential moduli under strain softening are assumed to be 30 MPa and−20 MPa, respectively,384

and the Biot’s modulus (M) is considered to be 200 MPa. The reference temperature T0 is set to be 20 ◦C, and the385

numerical condition of applied stress and local stress-strain diagram are depicted with boundary conditions in Figs.386

5 and 6. Here, t0 is set to be 0.1 sec., qt0 is applied as 500 kPa, and σy values are indicated in the figures for each387

simulation.388

3.1 Adiabatic case389

The reference case of internal length scale under the adiabatic condition is calculated with the permeability (kperm) of390

5.0×10−3 m/s and the specific heat (ρc) of 4.5 kJ/m3/◦C. The internal length of each case is described in the following391

table 2 when the wavenumber is assumed to be unity. The numerical simulations are investigated with the element392

size of 0.4 m.393



Wave propagation in a non-isothermal fluid-saturated porous medium 15

Fig. 5: One dimensional soil bar in axial compression

Fig. 6: Applied stress and local stress-strain diagram

kperm(m/s) ρc(kJ/m3/◦C) l(m)(kw = 1.0) Comparison

5.0 ×10−3 4.5 4.10 the reference
2.5 ×10−2 4.5 0.19 permeability change
5.0 ×10−3 2.4 ×10−2 0.94 specific heat change

Table 2: The internal length scale under the different conditions (Adiabatic case)

Fig. 7: Developement of the localization zone under possible wave propagation - the plastic strain moves towards the
depth along the time (the reference condition, permeability = 5.0×10−3 m/s, ρc = 4.5 kJ/m3/◦C, σy =30 MPa)

The reference case gives the internal length scale of 4.10 m and the plastic wave is able to propagate. We can verify394

this from the numerical simulation results depicted in Fig. 7. Nevertheless, in another two numerical experiments, one395

with increased permeability and the other with lowered specific heat, the harmonic wave ceases to propagate and the396

plastic zone seizes at a certain depth as shown in Fig. 8. This fixed plastic zone with time indicates that the wave is397

unable to propagate. This observation is consistent with Eq. (70) and the relationship among the internal length scale,398

permeability and specific heat showcased in Fig. 4. Similar plastic strain patterns were noticed by Zhang et al. [54] in399

dynamic wave propagation simulations under the isothermal condition.400
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(a) Permeability change (kperm = 2.5×10−2m/s, σy = 34 MPa) (b) Specific heat change (ρc= 2.2×10−2kJ/m3/◦C, σy = 30 MPa)

Fig. 8: Development of the localization zone under no wave propagation - the plastic strain stays at the same depth
along the time

Fig. 9: Developement of the localization zone (non-isothermal condition with κ = 1.0 kW/m/◦C, σy = 30 MPa)

3.2 Non-isothermal case401

With the results shown in Fig. 7 as the reference, we vary the thermal conductivity and determine how the thermal402

conductivity affects wave propagation. We assumed that the thermal conductivities of fluid and solid are the same403

and selected the value from the previous study by Sun [45], κ = 2.5× 10−3 kW/m/◦C. According to our previous404

analysis, both thermal conductivity and permeability can influence on the behavior of the THM system (Fig. 1). In405

order to analyze this effect, we conducted parametric study of thermal conductivity under two permeability conditions:406

(1) 5.0×10−3 m/s from the reference case in Section 3.1, and (2) 1.0×10−10 m/s as low permeability case. A series407

of numerical simulations are performed by varying the thermal conductivities provided that the specific heat (ρc) is408

assumed to be 4.5 kW/m/◦C.409

Firstly, we introduced the thermal conductivity into the reference case and conducted the numerical simulation.410

When κ = 2.5× 10−3 kW/m/◦C was adopted, the numerical simulation showed little change in the plastic strain411

compared to the adiabatic condition in Fig. 7. However, when the thermal conductivity is increased to 1.0 kW/m/◦C,412

we found the wave propagation behavior started to change. These results are depicted in Fig. 9. The plastic strain is413

increased compared to the adiabatic case, and the plastic wave is still able to propagate along time. Considering the414

initial and boundary conditions of temperature field, we expect that the prescribed zero temperature at the surface (10415

m) contributes additional compression to the one-dimensional bar.416
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(a) κ = 2.5×10−3 kW/m/◦C (b) κ = 1.0 kW/m/◦C

Fig. 10: Developement of the localization zone of non-isothermal condition with different thermal conductivities -
plastic zone moves toward the depth along the time (kperm = 1.0×10−10 m/s, ρc = 3.5 kW/m/◦C, σy = 3.8 MPa)

(a) Permeability change (kperm = 1.0×10−2m/s, σy = 34 MPa) (b) Specific heat change (ρc = 2.2×10−2 kJ/m3/◦C, σy = 30 MPa)

Fig. 11: Development of the localization zone under no wave propagation - the plastic strain stays the same depth
along the time (Non-isothermal condition, κ = 1.0 kW/m/◦C)

Next, we started from the numerical set up of adiabatic limit with the permeability equal to 1.0×10−10 m/s. When417

the thermal conductivity of 2.5×10−3 kW/m/◦C was applied, the response of plastic strain gave little effects compared418

to the adiabatic condition. When κ became larger than 1.0×10−1 kW/m/◦C, however, we found the changes of plastic419

localization zone. Fig. 10 depicts the changes of wave propagation with different thermal conductivities under the low420

permeability condition. We can identify that both permeability and thermal conductivity influence on the behavior of421

wave propagation under strain softening from Figs. 9 and 10.422

Furthermore, we took two cases in Section 3.1, in which the wave was not able to propagate, and re-analyzed the423

simulations by introducing the thermal conductivity. Again, the thermal conductivity of 2.5 ×10−3 kW/m/◦C showed424

little effect on both cases. Fig. 11 shows when κ = 1.0 kW/m/◦C was applied. We can see the width of localization425

zones and the plastic strains are increased compared to adiabatic case in Fig. 8. However, the plastic wave does not426

propagate along time. This indicates that the thermal conductivity appears limited effect on regularization.427

428

Remark 3429

We conducted additional numerical simulations for the non-isothermal case to analyze the influence of mesh size430
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(a) Plastic strain along the bar under different mesh conditions
(κ = 2.5×10−3kW/m/◦C)

(b) Temperature field results under different thermal conductivities
(with 25 elements)

Fig. 12: Independence of the strain localization zone width under different mesh sizes, and limited changes of
temperature field along the bar under various thermal conductivities (at t = 1.0 sec with kperm = 1.0×10−10m/s,

ρc = 4.5kJ/m3/◦C)

on shear band width. The permeability of 1.0× 10−10 m/s was selected to have enough internal length scale for431

stability. The thermal conductivity (κ = 2.5×10−3kW/m/◦C) and the specific heat (ρc = 4.5 kJ/m3/◦C) were adopted432

from the previous study by Sun [45]. The one-dimensional domain were discretized by 10, 20, 25, 30 linear finite433

element of equal sizes to study mesh dependency. As shown in Fig. 12 (a), the plastic strain distribution from the434

numerical simulations suggests mesh independence. In addition, Fig. 12 (b) describes temperature field distribution435

of the numerical simulations for the non-isothermal condition. With the same material properties used in the mesh436

study, the domain with 25 elements is selected. We can see how the temperature changes with different thermal437

conductivities.438

4 Conclusion439

The one-dimensional wave propagation in a full saturated, thermo-sensitive porous medium has been analyzed. The440

stability analysis indicates that the governing equations of the thermo-hydro-mechanics system leads to a character-441

istic polynomial at least one order higher than the isothermal poromechanics counterpart. By applying the Routh-442

Hurwitz stability criterion to this higher-order characteristic polynomial, we determine that instability may occur if443

(1) strain softening occurs and/or (2) specific heat per mass is less than a critical value proportional to Biot’s mod-444

ulus and the square of the thermal expansion coefficient and (3) when both permeability and thermal conductivity445

are zero. Dispersion analysis on the THM system reveals that a dispersive wave may propagate in a fully saturated,446

thermo-sensitive system under certain limited conditions. Nevertheless, the internal length scale introduced by the447

thermo-hydro-mechanical coupling vanishes at the short wavelength limit. For the adiabatic limit case, we derive an448

explicit expression of the internal length scale as a function of permeability, specific heat, wavenumber and other449

material properties. The cutoff wavenumber is also identified. Our results indicate that there is a limited range of450

wavenumbers that allows dispersive waves to propagate at finite speeds.451
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Appendix A Relation between phase velocity and wavenumber457

In the dispersion analysis of non-isothermal two-phase porous media, we may establish the relation between the phase458

velocity (vp) and the wavenumber (kw). Our starting point is Eq. (45)2 from Section 2.3.1, which reads,459

ω
2 =

4a4λ 3
r +3a3λ 2

r +2a2λr +a1

4a4λr +a3
, (A.1)

where the coefficients are from Eqs. (17) to (20), i.e.,

a4 = ρ(ρc−9α
2
mT0M), (A.2)

a3 = ρ(κ +ρckM)k2
w, (A.3)

a2 = (ρcEt +ρcb2M+ρκkMk2
w +β

2T0 +6αmβbT0M−9Etα
2
mT0M)k2

w, (A.4)

a1 = (Etκ +b2
κM+ρcEtkM+β

2kT0M)k4
w. (A.5)

By substituting Eqs. (A.2) to (A.5) in to Eq. (A.1), we may express ω in terms of wavenumber (kw) as shown below,

ω
2 =

aw4 +aw3k2
w +aw2k4

w

aw1 +aw0k2
w

, (A.6)

where the coefficients in Eq. (A.6) are,

aw4 = 4ρ(ρc−9α
2
mT0M)λ 3

r , (A.7)

aw3 = 3ρ(κ +ρckM)λ 2
r +2(ρcEt +ρcb2M+β

2T0 +6αmβbT0M−9Etα
2
mT0M)λr (A.8)

aw2 = 2(ρκkM)λr +Etκ +b2
κM+ρcEtkM+β

2kT0M, (A.9)

aw1 = 4ρ(ρc−9α
2
mT0M)λr, (A.10)

aw0 = ρ(κ +ρckM). (A.11)

Therefore, the phase velocity (vp = ω/kw) can be expressed as a function of the wavenumber (kw) and material460

parameters as shown below,461

vp =
ω

kw
=

√
aw4/k2

w +aw3 +aw2k2
w

aw1/k2
w +aw0

. (A.12)

This relation proves that the wave propagating in the porous media that has already lost stability is dispersive.462

Appendix B Cutoff wavenumber for the adiabatic case463

The objective of this section is to determine the cutoff wavenumber of the adiabatic THM system. At the adiabatic464

limit, the characteristic polynomial of the THM system takes the following form (the same with Eq. (49) to Eq. (53)),465

λ
3 +aλ

2 +bλ + c = 0, (B.1)

where the coefficients of the characteristic equation (B.1) reads,

a = a0y, a0 =
ρckM

ρc−9α2
mT0M

, (B.2)

b = b0y, b0 =
ρcEt +ρcb2M+β 2T0 +6αmβbT0M−9α2

mEtT0M
ρ(ρc−9α2

mT0M)
, (B.3)

c = c0y2, c0 =
(ρcEt +β 2T0)kM
ρ(ρc−9α2

mT0M)
, (B.4)

y = k2
w. (B.5)
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The discriminant of the above equations is denoted as,466

4=−4b03
y3 +a02

b02
y4 +18a0b0c0y4−27c02

y4−4a03
c0y5, (B.6)

which can be rewritten in terms of the coefficients, w,r and s, i.e.,467

4=−y3(wy2 + ry+ s), (B.7)

where,

w = 4a03
c0, (B.8)

r = 27c02−a02
b02−18a0b0c0, (B.9)

s = 4b03
. (B.10)

Following the approach used in Section 2.3.2, we assume that stability of the adiabatic system has already lost and468

determine the cutoff wavenumber beyond which the dispersive wave fails to propagate at a finite speed. Assuming469

that the porous medium remains permeable, the condition that causes the adiabatic THM system losing stability reads,470

−b2M < Et <−β
2T0/ρc, c > 9α

2
mT0M/ρ, k > 0. (B.11)

Assuming that Condition (B.11) holds, we may conclude that Eq. (B.1) has one real root and two complex conjugate471

roots if we can prove that the discriminant in Eq. (B.6) is negative. Note that the quadratic polynomial of wy2 + ry+ s472

in Eq. (B.7) is positive when the wave can propagate, because y3, a function of wavenumber (kw), is always positive in473

that case. Furthermore, by applying Condition (B.11) into Eq. (B.4) and Eq. (B.5), one may deduce that c0 is strictly474

negative and a0 is strictly positive. Therefore, we conclude that the coefficient w is negative when Condition (B.11)475

holds. Next, we consider the term b0. Assume that,476

b0 =
ρcEt +ρcb2M+β 2T0 +6αmβbT0M−9α2

mEtT0M
ρ(ρc−9α2

mT0M)
> 0. (B.12)

This assumption implies that,

ρcEt +ρcb2M+β
2T0 +6αmβbT0M−9α

2
mEtT0M > 0, (∵ ρc−9α

2
mT0M > 0) (B.13)

⇒ Et >
−ρcb2M−β 2T0−6α2

mβbT0M
ρc−9α2

mT0M
≥ −ρcb2M−β 2T0−6α2

mβbT0M
ρc

, (B.14)

⇒ Et >−b2M−
(

β 2T0 +6α2
mβbT0M

ρc

)
. (B.15)

Given that (β 2T0 + 6α2
mβbT0M)/ρc ≥ 0, the assumption (B.12) is valid under Condition (B.11). Therefore, b0 is477

positive, which in return implies that s is also positive (according to Eq. (B.10)). Since w and s are of opposite signs,478

the two distinct roots of the quadratic function of wy2 + ry+ s = 0 always have the real parts that are of opposite479

signs unless the discriminant of the quadratic equation equals to zero. Furthermore, the root with a real positive part480

reads (−r−
√

r2−4ws)/2w. Recall that our focus is on the case where the discriminant is negative. This situation is481

particularly interesting, because it leads to two distinct non-real complex roots whose real parts are of opposite signs.482

Therefore, we can derive the range of y in which the discriminant expressed in Eq. (B.6) is negative (4< 0), i.e.,483

0 < y(= k2
w)<

−r−
√

r2−4ws
2w

, (B.16)

where,

w = 4a03
c0, (B.17)

r = 27c02−a02
b02−18a0b0c0, (B.18)

s = 4b03
. (B.19)
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As a result, the cutoff wavenumber can be written as,484

kw,cut =

√
−r−

√
r2−4ws

2w
, (B.20)

in which each coefficient (w, r, s) reads,

w =
4k4M4ρ2c3(ρcEt +β 2T0)

(ρc−9α2
mMT0)4 , (B.21)

r =
27k2M2(ρcEt +β 2T0)

2

ρ2(ρc−9α2
mMT0)2 − 18ck2M2(ρcEt +β 2T0)(ρcEt +ρcb2M+β 2T0 +6αmbβMT0−9α2

mEtMT0)

ρ(ρc−9α2
mMT0)3

− c2k2M2(ρcEt +ρcb2M+β 2T0 +6αmbβMT0−9α2
mEtMT0)

2

(ρc−9α2
mMT0)4 , (B.22)

s =
4(ρcEt +ρcb2M+β 2T0 +6αmbβMT0−9α2

mEtMT0)
3

ρ3(ρc−9α2
mMT0)3 . (B.23)

As a result, the cutoff wavenumber can be expressed as a function of mobility (k), specific heat (ρc), tangential485

modulus under strain softening (Et ), reference temperature (T0) and other material parameters:486

kw,cut = f (k,ρc,Et ,T0,b,M,β ,αm) . (B.24)

Appendix C Internal length scale for the adiabatic case487

The objective of this section is to determine the internal length scale of the adiabatic THM system. Considering the488

damping coefficient in Eq. (70), the coefficients in Eqs. (61) and (64) are written as follows,489

α =

∣∣A+B+ 2
3 a
∣∣kw√

3(A−B)
, (C.1)

where,490

A =
3

√
−q

2
+

√
q2

4
+

p3

27
, B =

3

√
−q

2
−
√

q2

4
+

p3

27
, (C.2)

with,491

p =
1
3
(3b−a2), q =

1
27

(2a3−9ab+27c). (C.3)

Here, we can express p, q in terms of material parameters:

p =

[
− k2M2ρ2c2k4

w

3(ρc−9α2
mMT0)2 +

(ρcEt +ρcb2M+β 2T0 +6αmβbMT0−9α2
mEtMT0)k2

w

ρ(ρc−9α2
mMT0)

]
, (C.4)

q =

[
2ρ3c3k3M3k6

w

27(ρc−9α2
mMT0)3 +

kM(ρcEt +β 2T0)k4
w

ρ(ρc−9α2
mMT0)

− ckM(ρcEt +ρcb2M+β 2T0 +6αmβbMT0−9α2
mEtMT0)k4

w

3(ρc−9α2
mMT0)2

]
.

(C.5)

By rearranging the expression with respect to the permeability k, we can express the values of−q/2 and q2/4+ p3/25492

in Eq. (C.2) as follows:493

−q
2
= a11k+a12k3, (C.6)

q2

4
+

p3

27
= a21 +a22k2 +a23k4, (C.7)
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where,

a11 =

[
− ρcEt +β 2T0

2ρ(ρc−9α2
mMT0)

+
c(ρcEt +ρcb2M+β 2T0 +6αmβbMT0−9α2

mEtMT0)

6(ρc−9α2
mMT0)2

]
Mk4

w, (C.8)

a12 =

[
− ρ3c3

27(ρc−9α2
mMT0)3

]
M3k6

w, (C.9)

a21 =

[
(ρcEt +ρcb2M+β 2T0 +6αmβbMT0−9α2

mEtMT0)
3

27ρ3(ρc−9α2
mMT0)3

]
k6

w, (C.10)

a22 =

[
(ρcEt +β 2T0)

2

4ρ2(ρc−9α2
mMT0)2 −

c(ρcEt +β 2T0)(ρcEt +ρcb2M+β 2T0 +6αmβbMT0−9α2
mEtMT0)

6ρ(ρc−9α2
mMT0)3

− c2(ρcEt +ρcb2M+β 2T0 +6αmβbMT0−9α2
mEtMT0)

2

108(ρc−9α2
mMT0)4

]
M2k8

w, (C.11)

a23 =

[
ρ2c3(ρcEt +β 2T0)

27(ρc−9α2
mMT0)4

]
M4k10

w . (C.12)

The damping coefficient α in Eq. (70) can be expressed as,

α =
kw
∣∣A+B+ 2

3 a
∣∣

√
3(A−B)

with a = a01k and a01 =

[
ρcM

ρc−9α2
mT0M

]
k2

w, (C.13)

or equivalently as,

α =

kw

∣∣∣∣ 3
√

a11 +a12k3 +
√

a21 +a22k2 +a23k4 +
3
√

a11 +a12k3−
√

a21 +a22k2 +a23k4 + 2
3 a01kk2

w

∣∣∣∣
√

3
(

3
√

a11 +a12k3 +
√

a21 +a22k2 +a23k4− 3
√

a11 +a12k3−
√

a21 +a22k2 +a23k4

) . (C.14)

By adopting the small permeability as in the previous study [54], the limit form of Eq. (C.14) with respect to a small494

value of k is,495

α ∼=
kw
∣∣ 3
√

a11 +
√

a21 + 3
√

a11−
√

a21 +
2
3 a01kk2

w
∣∣

√
3
(

3
√

a11 +
√

a21− 3
√

a11−
√

a21
) . (C.15)

Therefore, the internal length scale (l), which is a reciprocal of the damping coefficient, can be calculated as a function496

of the mobility (k), specific heat (ρc), wavenumber (kw), tangential modulus under strain softening (Et ), reference497

temperature (T0) and other material properties as follows:498

l = f (k,ρc,kw,Et ,M,β ,αm,T0) = α
−1 ∼=

√
3
(

3
√

a11 +
√

a21− 3
√

a11−
√

a21
)

kw
∣∣ 3
√

a11 +
√

a21 + 3
√

a11−
√

a21 +
2
3 a01kk2

w
∣∣ . (C.16)
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