Abstract:
We introduce a mathematical framework designed to enable a simple image-to-simulation workflow for solids of complex geometries in the geometrically nonlinear regime. While the material point method is used to circumvent the mesh distortion issues commonly exhibited in Lagrangian meshes, a shifted domain technique originated from [Main and Scovazzi, 2018a,b] is used to represent the boundary conditions implicitly via a level set or signed distance function. Consequently, this method completely bypasses the need to generate high-quality conformal mesh to represent complex geometries and therefore allows modelers to select the space of the interpolation function without the constraints due to the geometrical need. This important simplification enables us to simulate deformation of complex geometries inferred from voxel images. Verification examples on deformable body subjected to finite rotation have shown that the new shifted domain material point method is able to generate frame-indifferent results. Meanwhile, simulations using microCT images of a Hostun sand have demonstrated that this method is able to reproduce the quasi-brittle damage mechanisms of single grain without the excessively concentrated nodes commonly displayed in conformal meshes that represent 3D objects with local fine details. [PDF]
0 Comments
![]() WaiChing "Steve" Sun, an assistant professor in the Department of Civil Engineering and Engineering Mechanics, is part of a team who recently won a highly competitive Department of Defense (DoD) MURI (Multidisciplinary University Research Initiative) grant to develop computational/data-driven/machine-learning-enhanced mathematical models for energetic materials with an integrated experimental and modeling efforts across university. The team is led by University of Missouri-Columbia, and includes researchers from University of Iowa, UIUC, Rensselaer Polytechnic Institute, Purdue University, and Columbia. The five-year $7.5 million AFOSR (Air Force Office of Scientific Research) grant was awarded for the DoD’s “MURI Topic #24: Microstructurally-Aware Continuum Models for Energetic Materials;” the project is titled “Integrating Multiscale Modeling and Experiments to Develop a Meso-Informed Predictive Capability for Explosives Safety and Performance” (See press release from Department of Defense here). Since its inception in 1985, the tri-service (ARO, ONR, AFOSR) MURI program has been supporting teams whose members have diverse sets of expertise as well as creative and different approaches to tackling problems. It’s a program that remains a cornerstone of the DOD’s legacy of scientific impact. Sun's work focuses on the development of theoretical and computational models and the corresponding computer algorithms for porous media, with applications in geomechanics and computational mechanics, and mechanics for civil infrastructure. This is the first DoD MURI grant obtained by Sun and the seventh Department of Defense grant Sun's research group has obtained since 2014. His work is supported by multiple federal funding agencies, including two highly competitive Young Investigator Program Awards from Army Research Office (ARO) and Air Force Office of Scientific Research (AFOSR), an 800K grant from Department of Energy Nuclear University Program (DOE NEUP) on nuclear waste disposal, and recently an NSF CAREER award from the mechanics of materials and structures program of CMMI division in NSF. |
Group NewsNews about Computational Poromechanics lab at Columbia University. Categories
All
Archives
July 2023
|