Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Nick Vlassis passed the PhD defense

8/25/2021

0 Comments

 
Picture
I am excited that the thesis committee (Professor George Deodatis, Professor JS Chen, Professor Richard Regueiro, Professor Marco Giometto and myself) have approved our team member Nick Vlassis's PhD dissertation "Towards Trustworthy Geometric Deep Learning for Elastoplasticity". Nick will continue to collaborate with us on the DOE NNSA project "Center for Micromorphic Multiphysics Porous and Particulate Materials Simulations with Exascale Computing Workflows (MSC)" (by led University of Colorado Boulder) as a Postdoctoral Research Scientist .

Nick's work focuses on formulating geometric learning tasks to create meta-models that generate interpretable constitutive laws from MD, DNF, DEM and experimental data across different length scales, often with physical constraints that often involves higher-order derivatives (see list of publication below). During PhD study, Nick has been awarded the Mindlin Scholarship by the Fu Foundation School of Engineering and Applied Science and a few NSF travel fellowships to conferences. 

Congratulations for the well-deserved distinction, Nick! We are looking forward for your outstanding contribution to the DOE NNSA project! 

Publications: 
  1. N. Vlassis, W.C. Sun, Sobolev training of thermodynamic-informed neural network for interpretable elasto-plasticity models with level set hardening, Computer Methods in Applied Mechanics and Engineering, doi:10.1016/j.cma.2021.113695, 2021. [Video][preprint]
  2. N. Vlassis, R. Ma, W.C. Sun, Geometric deep learning for computational mechanics Part I: Anisotropic Hyperelasticity, Computer Methods in Applied Mechanics and Engineering, doi:10.1016/j.cma.2020.113299, 2020. [PDF]
  3. X. Sun, B. Bahmani, N. Vlassis, W.C. Sun, Y. Xu, Data-driven discovery of interpretable causal relations for deep learning material laws with uncertainty quantification, Granular Matter, accepted, 2021. [arxiv]
  4. C. Cai, N. Vlassis, L. Magee, R. Ma", Z. Xiong, B. Bahmani, T-F Wong, Y. Wang, W.C. Sun, Equivariant geometric learning for digital rock physics. Part I: Estimating formation factor and effective permeability tensors, under review. [arxiv]
  5. N. Vlassis, W.C. Sun, Interpretable machine learning paradigm for discovering new plasticity theories, under review. ​

​

0 Comments

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.