Starting next month, the PI of Sun Group will join the editorial board of Acta Geotechnica:
https://www.springer.com/journal/11440/editors
0 Comments
Author: Xiao Sun, Bahador Bahmani, Nikolaos N. Vlassis, WaiChing Sun, Yanxun Xu Abstract: This paper presents a computational framework that generates ensemble predictive mechanics models with uncertainty quantification (UQ). We first develop a causal discovery algorithm to infer causal relations among time-history data measured during each representative volume element (RVE) simulation through a directed acyclic graph (DAG). With multiple plausible sets of causal relationships estimated from multiple RVE simulations, the predictions are propagated in the derived causal graph while using a deep neural network equipped with dropout layers as a Bayesian approximation for uncertainty quantification. We select two representative numerical examples (traction-separation laws for frictional interfaces, elastoplasticity models for granular assembles) to examine the accuracy and robustness of the proposed causal discovery method for the common material law predictions in civil engineering applications. The preprint is available at [URL]. The key ideas are to explore if causal discovery algorithm can deduce the plausible causal relations and whether the discovered causal relations match with our current state-of-the-art knowledge discovered by human. One interesting aspect I found quite interesting is that, while incorporating the causal relation into the deep learning constitutive laws might improve the interpretability, it does not always improve the accuracy (for instance, when prediction the properties of the immediate vertices is harder than that of the leaves of the causal graph). Abstract: Cyclotetramethylene-Tetranitramine (HMX) is a secondary explosive used in military and civilian applications. Its plastic deformation is of importance in the initiation of the decomposition reaction, but the details of plasticity are not yet fully understood. It has been recently shown that both the elastic constants and the critical resolved shear stress for plastic deformation are pressure sensitive. Since initiation takes place during shock loading, the pressure sensitivity of plasticity is highly relevant. In this work, we examine the pressure-sensitivity of the dynamic mechanical behavior of HMX. To this end, we use an elastic-plastic continuum constitutive model of single crystal HMX in which the anisotropic elastic constants and direction-dependent yield stress are rendered pressure-sensitive. The pressure sensitivity is calibrated based on input from molecular models. We observe that accounting for pressure sensitivity changes significantly the profile of the elastic-plastic wave and the wave propagation speed upon impact. The accumulated dissipation profile and the total dissipation also exhibit profound differences between the simulations that take account of the pressure-dependence of the plastic deformation and the pressure independent counterpart. Preprint: [PDF] |
Group NewsNews about Computational Poromechanics lab at Columbia University. Categories
All
Archives
July 2023
|