Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Our paper on using neural kernel method for capturing multiscale high-dimensional micromorphic plasticity of materials with internal structures accepted by CMAME

7/26/2023

0 Comments

 
Most of the constitutive laws leverages symmetry to reduce the dimensionality of the models. A classical example is the assumption of material isotropy. However, there are cases in which the minimal dimension of the material models must increase to sufficiently describe the physics. An example is micropolar and micromorphic theories (see below). This increase of dimensionality makes it more difficult to derive constitutive laws manually, as our curve-fitting ability and sense of geometry often not extend beyond 3D. ​ 
Picture
This paper introduces a neural kernel approach to generate high-dimensional micropolar and micromorphic plasticity models. Here we want to leverage the robustness and interpretability of the kernel method afforded by the feature space while generating a data-dependent kernel tailored to our specific need to capture the high-dimensional constitutive responses of the materials with complex internal structures. This treatment 
provides us with a unified data-driven approach to recognize the pattern of the data (through the data-dependent kernel), regardless of the data dimensions. Combined with a simple kernel ridge regression, we may generate a yield function of arbitrary input space dimensions without explicitly handcrafting the feature space. This trait is important for us to automate the process of generating yield surface from data of dimensions higher than 3, especially when data is sparse. 

Picture
The Figure below shows the learned micromorphic yield surface inferred from RVE projected onto 2D stress components. An interesting aspect we observe is that there could be multiple hypothesized yield surface fits the same data and they can be quite difference. Nevertheless, the feature space obtained from the kernels does seem to provide a regularization that lead to a more convex yield surface, which can be important to ensure thermodynamics consistency. 
Picture
More in-depth discussion can be found by the preprint [URL]. 
0 Comments

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.