Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Last Call for Abstracts: EMI mini-symposium on Computational Geomechanics, Boston 5/29-6/1/2018 (abstracts due tomorrow)

1/30/2018

0 Comments

 
MS27: Computational Geomechanics

​WaiChing Sun, Columbia University
Jose Andrade, Caltech
Ronaldo Borja, Stanford University
Jinhyun Choo, University of Hong Kong
Majid Manzari, George Washington University
Richard Regueiro, University of Colorado Boulder
AbstractGeomaterials, such as soil, rock, and concrete, are multiphase porous materials whose macroscopic mechanical behaviors are governed by grain size distribution and mineralogy, fluid-saturation, pore space, temperature, loading paths and rate, drainage conditions, chemical reactions, and other factors. As a result, predicting the mechanical responses of geomaterials often require knowledge of how several processes, which often take place in different spatial and temporal domains, interact with each other across length scales. This mini-symposium is intended to provide a forum for researchers to present contributions to recent advances in computational geomechanics problems. Topics of interest include, but are not limited to (1) development and validation of constitutive models that addressed multi-physical coupling effects, (2) discrete and continuum formulations for geomechanics problems, (3) iterative sequential couplings of fluid and solid solvers, (4) uncertainty quantification and spatial variability of soil properties, (5) multiscale mechanics, (6) modeling of weak and strong discontinuities, (7) regularization techniques to circumvent pathological mesh dependence and (8) techniques to model crack growth and fragmentation processes in geomaterials.

Submission link: https://www.openconf.org/emi2018/openconf.php

0 Comments

Our manuscript on crystallization-induced damage in porous media has been accepted by CMAME

1/24/2018

0 Comments

 
Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase- eld modeling

Jinhyun Choo  WaiChing Sun

Abstract
Cracking and damage from crystallization of minerals in pores center on a wide range of problems, from weathering and deterioration of structures to storage of CO2 via in situ carbonation. Here we develop a theoretical and computational framework for modeling these crystallization-induced de- formation and fracture in infiltrated porous materials. Conservation laws are formulated for coupled chemo-hydro-mechanical processes in a multiphase material composed of the solid matrix, liquid solution, gas, and crystals. We then derive an expression for the effective stress tensor that is energy-conjugate to the strain rate of a porous material containing crystals growing in pores. is form of effective stress incorporates the excess pore pressure exerted by crystal growth—the crystallization pressure—which has been recognized as the direct cause of deformation and fracture during crystallization in pores. Continuum thermodynamics is further exploited to formalize a constitutive framework for porous media subject to crystal growth. e chemo-hydro-mechanical model is then coupled with a phase- eld approach to fracture which enables simulation of complex fractures without explicitly tracking their geometry. For robust and e cient solution of the initial-boundary value problem at hand, we utilize a combination of nite element and nite volume methods and devise a block-partitioned preconditioning strategy. rough numerical examples we demonstrate the capability of the proposed framework for simulating complex interactions among unsaturated ow, crystallization kinetics, and cracking in the solid matrix. [PDF]

0 Comments

Our manuscript on using deep learning to perform recursive homogenization for multi-permeability materials accepted by CMAME.

1/19/2018

0 Comments

 
Our manuscript on using recurrent neural network to perform offline homogenization for multi-phase multi-permeability porous media has been accepted by CMAME today. This technique break down the computational barrier commonly exhibited in DEM-FEM and FEM2 models and therefore allow simulations connected across multiple scales. Spectral decomposition is used to correct the frame-dependent issues exhibited in RNN constitutive laws; issues on over- and under-fitting are regularized; k-fold validation techniques are used; and a model selection procedure on a directed graph is introduced. [PDF]
0 Comments

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.