Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

New paper on our invention of two-player cooperative game for self-generating elasto-plasticity knowledge from directed multi-graph with automated guided experiments accepted in the special issue of Computational Mechanics

5/13/2019

0 Comments

 
Abstracts: 
We introduce a multi-agent meta-modeling game to generate data, knowledge, and models that make predictions on constitutive responses of elasto-plastic materials. We introduce a new concept from graph theory where a modeler agent is tasked with evaluating all the modeling options recast as a directed multigraph and find the optimal path that links the source of the directed graph (e.g. strain history) to the target (e.g. stress) measured by an objective function. Meanwhile, the data agent, which is tasked with generating data from real or virtual experiments (e.g. molecular dynamics, discrete element simulations), interacts with the modeling agent sequentially and uses reinforcement learning to design new experiments to optimize the prediction capacity. Consequently, this treatment enables us to emulate an idealized scientific collaboration as selections of the optimal choices in a decision tree search done automatically via deep reinforcement learning.  Preprint available at ResearchGate [URL]. 
0 Comments

PhD candidate Kun Wang has received the Mindlin Scholarship

5/10/2019

0 Comments

 
My PhD student Kun Wang has received the Mindlin Scholarship from the Fu Foundation School of Engineering and Applied Science of Columbia University. The Mindlin scholarship is given to a graduate student in the Columbia Engineering school who demonstrates superior achievement, integrity, curiosity and creativity. The Mindlin scholarship is established by the Mindlin family and the SEAS in honor of the three Mindlin brothers (Eugene as an engineer and businessman, Raymond as a scientist and professor at Columbia, and Rowland as a physician and public health administrator).  

Below is the list of published work Kun finished during his PhD study with our group. Congratulations, Kun! Well deserved! 


Published Work:
  1. K. Wang, W.C. Sun, A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Computer Methods in Applied Mechanics and Engineering,  doi:10.1016/j.cma.2016.02.020, 2016. [DRAFT]
  2. K. Wang, W.C. Sun, Anisotropy of a tensorial Bishop's coefficient for wetted granular materials, Journal of Engineering Mechanics, doi:10.1061/(ASCE)EM.1943-7889.0001005, 2015. [DRAFT] [Bibtex]
  3. K. Wang, W.C. Sun, S. Salager, S. Na, G. Khaddour, Identifying material parameters for a micro-polar plasticity model via X-ray micro-CT images: lessons learned from the curve-fitting exercises, accepted, International Journal of Multiscale Computational Engineering, 2016. [DRAFT]
  4. K. Wang, W.C. Sun, A unified variational eigen-erosion framework for interacting fractures and compaction bands in brittle porous media, doi:10.1016/j.cma.2017.01.017, Computer Methods in Applied Mechanics and Engineering, 2017. [DRAFT]
  5. K. Wang, W.C. Sun,   A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning​, Computer Methods in Applied Mechanics and Engineering, 334(1):337-380, doi:10.1016/j.cma.2018.01.036, ​2018. 
  6. R. Gupta, S. Salager, K. Wang, W.C. Sun, Open-source support toward validating and falsifying discrete mechanics models using synthetic granular materials Part I: Experimental tests with particles manufactured by a 3D printer, Acta Geotechnica, doi:10.1007/s11440-018-0703-0, 2018. 
  7. K. Wang, W.C. Sun, An updated Lagrangian LBM-DEM-FEM coupling model for dual-permeability porous media with embedded discontinuities, Computer Methods in Applied Mechanics and Engineering, 344:276-305, doi:10.1016/j.cma.2018.09.034, 2019. [PDF][Bibtex]
  8. K. Wang, W.C. Sun, Meta-modeling game for deriving theory-consistent, micro-structure-based traction-separation laws via deep reinforcement learning, Computer Methods in Applied Mechanics and Engineering, accepted, 346:216-241,  doi:10.1016/j.cma.2018.11.026, 2019. [PDF][Bibtex]
  9. K. Wang, W.C. Sun, Q. Du, A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation, submitted to Computational Mechanics, special issue on data-driven modeling and simulation: theory, methods and applications, 2019. 
0 Comments

New paper on size-dependent anisotropy of geomaterials accepted by CMAME

5/7/2019

0 Comments

 
Abstract:

We introduce a regularized anisotropic modified Cam-clay (MCC) model which captures the size-dependent anisotropic elastoplastic responses for clay, mudstone, shales, and sedimentary rock. By homogenizing the multiscale anisotropic effects induced by clay particle aggregate, clusters, peds, micro-fabric, and mineral contact across length scales, we introduce two distinctive anisotropic mechanisms for the MCC model at the material point and mesoscale levels. We first employ a mapping that links the anisotropic stress state to a fictitious isotropic principal stress-space to introduce anisotropy at the material point scale. Then, the mesoscale anisotropy is introduced via an anisotropic regularization mechanism. This anisotropic regularization mechanism is triggered by introducing gradient-dependence of the internal variables through a penalty method such that the resultant gradient-enhanced plastic flow may exhibit anisotropic responses non-coaxial to the stress gradient of the yield function. The influence of the size-dependent anisotropy on the formation of the shear band and the macroscopic responses of the effective media are analyzed in 2D and 3D numerical examples. [PDF]
Picture
0 Comments

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.