Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Conference paper on micropolar coupling method accepted for ECCOMAS Congress 2016.

3/22/2016

0 Comments

 
A SEMI-IMPLICIT MICROPLAR DISCRETE-TO-CONTINUUM METHOD FOR GRANULAR MATERIALS

Kun Wang, WaiChing Sun

Department of Civil Engineering and Engineering Mechanics, Columbia University
614 SW Mudd, Mail Code: 4709, New York, NY 10027
e-mail: {kw2534,wsun}@columbia.edu

Keywords: Micropolar Continua, Discrete-to-Continuum, Granular Matters, Length Scale, Strain Localization.

Abstract. A micropolar discrete-continuum coupling model is proposed to link the collectively particulate mechanical simulations at high-order representative elementary volume to field-scale boundary value problems. By incorporating high-order kinematics to the homogenization procedure, contact moment and force exerted on grain contacts are homogenized into a non-symmetric Cauchy stress and higher-order couple stress. These stress measures in return become the constitutive updates for the macroscopic finite element model for micropolar continua. Unlike the non-lcoal weighted averaging models in which the intrinsic length scale must be a prior knowledge to compute the nonlocal damage or strain measures, the proposed model introduces the physical length scale directly through the higher-order kinematics. As a result, there is no need to tune or adjust the intrinsic length scale. Furthermore, since constitutive updates are provided directly from micro-structures, there is also no need to calibrate any high-order material parameters that are difficult to infer from experiments. These salient features are demonstrated by numerical examples. The classical result from Mindlin is used as a benchmark to verify the proposed model. 
Picture
0 Comments

Scheduled seminar at Harvard Applied Mechanics Colloquia

3/14/2016

13 Comments

 
URL: https://www.seas.harvard.edu/calendar/event/86486

Some remarks on modeling fluid-infiltrating, thermal-sensitive, and partially-frozen porous media across length scales
23MAR
Applied Mechanics Colloquia
Steve WaiChing Sun, Columbia University
Wednesday, March 23, 2016 - 4:00pm to 5:00pm
MD G115

​Many engineering applications, such as geological disposal of nuclear waste, require reliable predictions on how porous media responds to extreme environments. This presentation will discuss the relevant modeling techniques designed specific for porous media subjected to such harsh environments. In particular, we will discuss (1) a finite strain finite element model that captures the freeze-thaw action of frozen soil, (2) the stability and dispersion analyses that reveals the vanishing of physical length scale of thermal-sensitive porous media at short wavelength limit, (3) the usage of multiscale techniques to link grain-scale simulations to macroscopic predictions and hence bypass the usage of any macroscopic phenomenological law. Spurious pathological predictions by previous DEM-FEM models are examined and the remedies are proposed. 

Speaker Bio: WaiChing Sun is an assistant professor in the Department of Civil Engineering and Engineering Mechanics at Columbia University. Prior to joining the Columbia faculty, he is a senior member of technical staff at Sandia National Laboratories. Professor Sun works in the fields of theoretical and computational poromechanics with a special emphasis on geomechanical applications. His research includes multiscale modeling porous media, multiscale verification and validation with CT images, digital rock and granular physics, applications of mathematical tools, such as graph theory, Lie algebra for modern engineering problems. He received the Dresden Junior Fellowship in 2016, Army Young Investigator Program Award in 2015, and the Caterpillar Best Paper Prize in 2013. He holds BS degree from UC Davis, MS degrees from Stanford and Princeton and PhD degrees from Northwestern. 

Host: 
Chris Rycroft
Contact: 
Rebekah Stiles
Email: 
[email protected]
13 Comments

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.