Our paper on capturing evolving anisotropy of freezing clayey soil has been accepted by IJNAMG4/26/2022 Authors: Qing Yin, Edward Andò, Gioacchino Viggiani, WaiChing Sun Abstract: This paper presents a combined experimental-modeling effort to interpret the coupled thermo-hydro-mechanical behaviors of the freezing soil, where an unconfined, fully saturated clay is frozen due to a temperature gradient. By leveraging the rich experimental data from the microCT images and the measurements taken during the freezing process, we examine not only how the growth of ice induces volumetric changes of the soil in the fully saturated specimen but also how the presence and propagation of the freezing fringe front may evolve the anisotropy of the effective media of the soil-ice mixture that cannot be otherwise captured phenomenologically in the isotropic saturation-dependent critical state models for plasticity. The resultant model is not only helpful for providing a qualitative description of how freezing affects the volumetric responses of the clayey material, but also provide a mean to generate more precise predictions for the heaving due to the freezing of the ground. [PDF]
0 Comments
Congratulations to Dr. Hyoung Suk Suh for successfully defending his PhD dissertation (see URL). We are very grateful to other committee members, Professor Ronaldo Borja, Professor George Deodatis, Professor Majid Manzari and Professor Haim Waisman for their suggestions and feedbacks, and the Army Research Office and National Science Foundation for providing the financial support for his PhD study. Hyoung Suk joined my research group in 2018 from Yonsei University. He has published the following works during his tenure at Columbia. His PhD work focuses on the microporomechanics of geomaterials at extreme temperature with implications on how climate changes may affect the freeze-thaw action in frozen soil in Alaska. In addition to his research accomplishment, Hyoung Suk is also a beloved TA and had also been nominated as the candidate for the Presidential awards for outstanding teaching at Columbia twice. Dr. Suh, thank you for the 4 years of hard work and dedications! It is a privilege to serve as your PhD advisor and colleague! Published work:
After 2 years of delay due to pandemic, we are back to the roads now for conferences. Below are two talks, one on phase field modeling of ice lens, one on immersed phase field for fluid-driven fracture with Darcy-Stokes flow. Talk 1: Multi-phase-field approach for modeling ice lens growth and thaw in frozen soil Talk 2: An immersed phase field fracture model in fluid-infiltrating porous media with evolving Beavers-Joseph-Saffman condition Congratulations to Dr. Kun Wang who has been selected from around 200 applicants by ExxonMobil! He will join Computational Physics Section at EMRE’s Corporate Strategic Research Laboratories as a computational physicist to develop computational methods aimed at solving large-scale physical problems pertaining to the energy industry, with focus in the areas of flow in porous media, multi-scale phenomena, PDE-constrained optimization and uncertainty quantification. Kun has a distinguished career at both Columbia University and Los Alamos National Laboratory. His recent work published in Nature Communication and PNAS has been featured at Economist. During his time at Columbia, he has published 12 papers with the research group, as listed below. Published Work:
|
Group NewsNews about Computational Poromechanics lab at Columbia University. Categories
All
Archives
July 2023
|