Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Invited talk at Hong Kong University of Science and Technology 

12/31/2014

0 Comments

 
Concurrent and Hierarchical Multiscale Modeling for Fluid-infiltrating Solids 


URL: www.ce.ust.hk/Web/EventDetail.aspx?EventId=401



Dr. Steve WaiChing Sun
Assistant Professor 
Department of Civil Engineering & Engineering Mechanics
Columbia University in the City of New York, USA

Date:6th January 2015, Tuesday
Time:11:00 a.m.
Venue: Room 3574 (lift 27 & 28, Conference Room) Academic Building The Hong Kong University of Science and Technology 

Abstract 
The mechanical behavior of a fluid-infiltrating porous solid is significantly influenced by the presence and diffusion of the pore fluid in the void. This hydro-mechanical coupling effect can be observed in a wide range of materials, including rocks, soils, concretes, bones and soft tissues. Nevertheless, due to the high computational demand, explicitly simulating the pore scale solid-fluid interactions remains impractical for engineering problems commonly encountered in the field and basin scales. The objective of this talk is to present two classes of multiscale computer simulation technologies that allow the coupling of micro- and macro-scopic simulations across different spatial and temporal scales. The first class of model is a concurrent coupling model in which the deformation-diffusion problems are casted as the saddle point that optimizes the constrained partitioned incremental work of a multi-field energy functional. By introducing appropriate technology to enforce compatibility across length scales, pore-scale simulations in confined domain can be coupled with large-scale field problems while maintaining numerical stability and accuracy. The second class of multiscale model is a nonlocal hierarchical multiscale framework that couples grain-scale discrete element simulations with a macroscopic explicit dynamics finite element model. This hierarchical nonlocal DEM-FEM coupling retains the simplicity and efficiency of the continuum-based finite element model, while possessing the original length scale of the granular system. The pros and cons of these two different coupling strategies will be demonstrated in numerical examples.

 Biography Dr. Steve Sun is an Assistant Professor in the Department of Civil Engineering at Columbia University. His research focuses on the development of solution techniques for coupled geomechanics problem, and applications of mathematical tools, such as graph theory, Lie algebra, and combined deterministic-stochastic method, for modern engineering problems.

 For enquiries, please contact Miss Cheryl Tang 2358 8848
0 Comments

Columbia Poromechanics Group awarded new grant from Provost's Office 

12/30/2014

1 Comment

 
The poromechanics group has been selected to receive the Provost's Small Grants Program for Junior Faculty who Contribute to the Diversity Goals of the  University from Columbia University. This program is designed to support Schools’ diversity plans, and to assist the University in meeting placement goals established in its affirmative action programs, by advancing the career success of outstanding junior faculty, in disciplines where the availability of qualified minorities and women exceeds their representation on our faculty. 
1 Comment

New ARO grant awarded to Columbia Poromechanics Group

12/30/2014

0 Comments

 
The poromechanics group is awarded new research grant from Army Research Office to study how moisture content affects the dynamics responses of granular matters in the pendular regime. Professor Sun will serve as the PI and PhD student Kun Wang will serve as GRA for the STIR proposal, which will begin in 1/1/2015. 
0 Comments

Call for abstracts for USNCCM San Diego 

12/19/2014

0 Comments

 
Dear colleagues, 

I would like to draw your attention to the upcoming mini-symposia for USNCCM San Diego. The due date is 2/15/2015. Further information can be found in the URL listed below: 

http://13.usnccm.org/

Best Regards,

Waiching Sun


MS308: Multiscale Modeling of Granular Materials

Ahmed Elbanna, University of Illinois Urbana Champaign
Waiching Sun, Columbia university

Granular systems are ubiquitous in our everyday experience. They play a central role in the physics of many natural phenomena that are societally relevant such as slope failures (e.g. landslides and man-made embankment) and earthquakes. Grain transportation, pouring, packing and flowing are also essential processes in many industrial fields such as food, pharmaceutical, and construction material industries.

From a fundamental point of view, granular materials deform in complex, and possibly chaotic, ways. Small scale instabilities on the grain scale, such as cooperative alignment of particles in a given direction, may lead to large scale fragilities on the macroscopic scale such as shear banding and failure. Moreover, granular particles are not necessarily smooth and various types of contact and surface forces exist between them. A multiscale description for deformation is thus essential to take into account the small scale nonlinearities and their implications on the overall behavior; a naive separation between micro and macro scales may be misleading.

This session solicits contributions in the broad area of multiscale modeling of granular materials. Relevant topics include, but not limited to, : (1) constitutive models for granular materials in the dense and hydrodynamic regimes, (2) application of graph theory to granular physics, (3) coupled granular-continuum simulations, (4) modeling strain localization and shear bands in the presence and absence of fluids, and (5) modeling large scale stick slip instabilities as observed in landslides and earthquakes. Experimental studies on microstructures of granular materials via tomographic imaging or digital image correlation techniques are also welcomed.   

MS1005: Multiphysical Modeling of Geomaterials

WaiChing Sun, Columbia University
Qiushi Chen, Clemson University
Craig Foster, University of Illinois at Chicago
Marcelo Javier Sanchez Castilla, Texas A&M University
 
Geomaterials, such as soil, rock and concrete, are multiphase porous materials whose macroscopic mechanical behaviors are governed by grain size distribution and mineralogy, fluid-saturation, pore space, temperature, loading paths and rate, drainage conditions, chemical reactions, and other factors. As a result, predicting the mechanical responses of geomaterials often requires knowledge on how several processes, which often take place in different spatial and temporal domains, interact with each other across length scales.

This mini-symposium is intended to provide a forum for researchers to present contributions on recent advances in computational geomechanics problems. Topics within the scope of interests include: development and validation of constitutive models that address coupling effects, discrete and continuum formulations for hydromechanics and thermo-hydro-mechanics problems, iterative sequential couplings of fluid and solid solvers, spatial variability of soil properties, multiscale mechanics, numerical enhancement techniques such weak and strong discontinuities, and regularization techniques to circumvent pathological mesh dependence.
0 Comments

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.