Dear colleagues,
I would like to draw your attention to the upcoming mini-symposia for USNCCM San Diego. The due date is 2/15/2015. Further information can be found in the URL listed below: http://13.usnccm.org/ Best Regards, Waiching Sun MS308: Multiscale Modeling of Granular Materials Ahmed Elbanna, University of Illinois Urbana Champaign Waiching Sun, Columbia university Granular systems are ubiquitous in our everyday experience. They play a central role in the physics of many natural phenomena that are societally relevant such as slope failures (e.g. landslides and man-made embankment) and earthquakes. Grain transportation, pouring, packing and flowing are also essential processes in many industrial fields such as food, pharmaceutical, and construction material industries. From a fundamental point of view, granular materials deform in complex, and possibly chaotic, ways. Small scale instabilities on the grain scale, such as cooperative alignment of particles in a given direction, may lead to large scale fragilities on the macroscopic scale such as shear banding and failure. Moreover, granular particles are not necessarily smooth and various types of contact and surface forces exist between them. A multiscale description for deformation is thus essential to take into account the small scale nonlinearities and their implications on the overall behavior; a naive separation between micro and macro scales may be misleading. This session solicits contributions in the broad area of multiscale modeling of granular materials. Relevant topics include, but not limited to, : (1) constitutive models for granular materials in the dense and hydrodynamic regimes, (2) application of graph theory to granular physics, (3) coupled granular-continuum simulations, (4) modeling strain localization and shear bands in the presence and absence of fluids, and (5) modeling large scale stick slip instabilities as observed in landslides and earthquakes. Experimental studies on microstructures of granular materials via tomographic imaging or digital image correlation techniques are also welcomed. MS1005: Multiphysical Modeling of Geomaterials WaiChing Sun, Columbia University Qiushi Chen, Clemson University Craig Foster, University of Illinois at Chicago Marcelo Javier Sanchez Castilla, Texas A&M University Geomaterials, such as soil, rock and concrete, are multiphase porous materials whose macroscopic mechanical behaviors are governed by grain size distribution and mineralogy, fluid-saturation, pore space, temperature, loading paths and rate, drainage conditions, chemical reactions, and other factors. As a result, predicting the mechanical responses of geomaterials often requires knowledge on how several processes, which often take place in different spatial and temporal domains, interact with each other across length scales. This mini-symposium is intended to provide a forum for researchers to present contributions on recent advances in computational geomechanics problems. Topics within the scope of interests include: development and validation of constitutive models that address coupling effects, discrete and continuum formulations for hydromechanics and thermo-hydro-mechanics problems, iterative sequential couplings of fluid and solid solvers, spatial variability of soil properties, multiscale mechanics, numerical enhancement techniques such weak and strong discontinuities, and regularization techniques to circumvent pathological mesh dependence.
0 Comments
Leave a Reply. |
Group NewsNews about Computational Poromechanics lab at Columbia University. Categories
All
Archives
July 2023
|