Sun Research Group at Columbia University
  • Home
  • News
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • News
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Geometric learning for computational Mechanics Part II accepted by CMAME

11/7/2022

0 Comments

 
Generally speaking, reduced order modeling and constitutive modeling are considered different disciplines. In Part II of our research on geometric learning for computational Mechanics (see Part I here), we attempt to conduct these two very different ideas by using a graph isomorphism network to learn the low-dimensional representation of finite element solutions of microstructures.
Picture
​Then, instead of reconstructing the low-dimensional dynamics directly via a black-box approach, we use the macroscopic plasticity theory to create additional constraints (e.g., yield function consistency, plastic flow direction) such that the low-dimensional dynamics can be compatible with the macroscopic observations. ​
Picture
Dynamics of finite element solution predicted by GIN plasticity model.
On the other hand, the autoencoder of the graph isomorphism network also gives us a chance to recast the element of the latent space as the internal variables of the plasticity model and therefore gives more direct and interpretable relations between microstructural deformation patterns and macroscopic plasticity. ​
Picture
Our results also indicate that the geometric learning approach may enable us to more explicitly understand the geometry of the data manifested by the shape of the yield function as a function of both stress and elements of latent space of plastic deformation of RVE. This understanding, in return, gives us the opportunity to recast the reduced order modeling problem that can be updated via a classical constitutive law that is now with internal variables that can b be encoded as a snapshot of finite element mesh. The resultant models is found to perform robustly in forward predictions with loading paths different from the training data, in thew sense that there is no spurious patterns that might exhibit in RNN or 1D convolutional NN (see below). 

Preprint posted at ResearchGate here. Part III of this series is under progress and will submit soon. 
Picture
0 Comments



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: wsun@columbia.edu
Copyright @ 2014-2022.  All rights reserved.