Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

JEM paper on the tensorial Bishop's coefficient accepted

7/22/2015

0 Comments

 
A new research conducted by group member Kun Wang has results in a journal article accepted by Journal of Engineering Mechanics. This research focuses on the hydro-mechanical responses of wetted granular matters at the pendular regime. By analyzing the tensorial Bishop's coefficient using Young-Laplace equation and DEM, we study the relation between the macroscopic apparent cohesion and the formation and rupture of liquid bridges. We also examine the path dependence and anisotropy of the Bishop's coefficient from the force chain evolution simulated in DEM. Further information can be found in the preprint [PDF]. 

Abstract
The objective of this research is to use grain-scale numerical simulations to analyze the evolution of stress anisotropy exhibited in wetted granular matters. Multiphysical particulate simulations of unsaturated granular materials were conducted to analyze how the interactions of contact force chains and liquid bridges influence the macroscopic responses under various suction pressure and loading history. To study how formation and rupture of liquid bridges affect the mechanical responses of wetted granular materials, a series of suction-controlled triaxial tests were simulated with two grain assemblies, one composed of large particles of similar sizes, another one composed of a mixture of large particles with significant amount of fines. Our results indicate that capillary stress are anisotropic in both sets of specimens, and that the stress anisotropy is more significant in granular assemblies filled with fine particles. A generalized tensorial Bishop's coefficient is introduced to analyze the connections between microstructrual attributes and macroscopic responses. Numerical simulations presented in this paper indicate that the principal values and directions of this Bishop's coefficient tensor are path dependent. 
 
0 Comments



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.