Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

New paper on PyTorch-t0-FORTRAN UMAT implementation of level set plasticity accepted by Mechanics of Materials

5/6/2023

0 Comments

 
Picture
.Our collaborative research with Sandia National Laboratories on pyTorch-UMAT implementation for machine learning models has been accepted by Mechanics of Materials (See preprint [PDF]).
​

This paper introduces a publicly available PyTorch-ABAQUS deep-learning framework of a family of plasticity models where the yield surface is implicitly represented by a scalar-valued function. Our goal is to introduce a practical framework that can be deployed for engineering analysis that employs a user-defined material subroutine (UMAT/VUMAT) for ABAQUS, which is written in FORTRAN (see below)




To accomplish this task while leveraging the back-propagation learning algorithm to speed up the neural-network training, we introduce an interface code where the weights and biases of the trained neural networks obtained via the PyTorch library can be automatically converted into a generic FORTRAN code that can be a part of the UMAT/VUMAT algorithm. To enable third-party validation, we purposely make all the data sets, source code used to train the neural-network-based constitutive models, and the trained models available in a public repository. See the link below:

https://github.com/hyoungsuksuh/ABAQUS_NN

A variety of options (see below) of NN architecture has been pre-trained (see below)..

Picture
Benchmark material point simulations and finite element simulations in ABAQUS has been provided in the repository.  Please feel free to modify the codes and we would appreciate that if you can cite this paper if you use it for your own research. 

Note: we are actively developing this repository which may contain bugs. If you encounter a bug, please let us (Hyoung Suk Suh, [email protected]; WaiChing Sun, [email protected]) know. Please cite our work if you use it for your own research. We hope that this small tool can encourage and help more researchers from the ABAQUS ecosystem to build their own neural network model. Thank you! 

Reference: 
  • H.S. Suh, C. Kweon, B. Lester, S. Kramer, W.C. Sun, A publicly available e PyTorch-ABAQUS UMAT deep-learning framework for level-set plasticity, Mechanics of Materials, in press, 2023. 


0 Comments



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.