This article (see [preprint]) presents a multi-phase-field poromechanics model that simulates the growth and thaw of ice lenses and the resultant frozen heave and thaw settlement in multi-constituent frozen soils. In this model, the growth of segregated ice inside the freezing-induced fracture is implicitly represented by the evolution of two phase fields that indicate the locations of segregated ice and the damaged zone, respectively. The evolution of two phase fields is induced by their own driving forces that capture the physical mechanisms of ice and crack growths respectively, while the phase field governing equations are coupled with the balance laws such that the coupling among heat transfer, solid deformation, fluid diffusion, crack growth, and phase transition can be observed numerically. Unlike phenomenological approaches that indirectly capture the freezing influence on the shear strength, the multi-phase-field model introduces an immersed approach where both the homogeneous freezing and the ice lens growth are distinctively captured by the freezing characteristic function and the driving force accordingly. Verification and validation examples are provided to demonstrate the capacities of the proposed models. Support provided by US Army Research Office and National Science Foundation is gratefully acknowledged. The first author of this paper, the 6th graduated PhD of our group, Dr. Hyoung Suk Suh (see picture below) has received the DongJu Lee '03 Memorial Award in recognition of "his superior achievement and in honor of the integrity, curiosity, and creativity exhibited as a student at SEAS of Columbia." Congratulations, Hyoung Suk! I am looking forward for more great news in the upcoming year!
0 Comments
Leave a Reply. |
Group NewsNews about Computational Poromechanics lab at Columbia University. Categories
All
Archives
July 2023
|