Sun Research Group at Columbia University
  • Home
  • News
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • News
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Our paper on SO(3)-invariance of elastoplasticity model generated from deep neural network accepted by CMAME

1/21/2020

0 Comments

 
Abstract:

This paper examines the frame-invariance  (and the lack thereof) exhibited in simulated anisotropic elasto-plastic responses generated from supervised machine learning of classical multi-layer and informed-graph-based neural networks, and proposes different remedies to fix this drawback. The inherent  hierarchical relations among physical quantities and state variables in an elasto-plasticity model are first represented as directed graphs,  where three variations of the graph are tested. While feed-forward neural networks are used to train path-independent constitutive relations (e.g., elasticity), recurrent neural networks are used to replicate responses that depends on the deformation history, i.e. or path dependent. In dealing with the objectivity deficiency, we use the spectral form to represent tensors and, subsequently, three metrics, the Euclidean distance between the Euler Angles, the distance from the identity matrix, and geodesic on the unit sphere in Lie algebra, can be employed to constitute objective functions for the supervised machine learning. In this, the aim is to minimize the measured distance between the true and the predicted 3D rotation entities. Following this, we conduct numerical experiments on how these metrics, which are theoretically equivalent, may lead to differences in the efficiency of the supervised machine learning as well as the accuracy and robustness of the resultant models. Neural network models trained with tensors represented in component form for a given Cartesian coordinate system are used as a benchmark. Our numerical tests show that, even given the same amount of information and data, the quality of the anisotropic elasto-plasticity model is highly sensitive to the way tensors are represented and measured. The results reveal that using a loss function based on geodesic on the unit sphere in Lie algebra together with an informed directed graph yield significantly more accurate rotation prediction than the other tested approaches. [PDF]
0 Comments



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: wsun@columbia.edu
Copyright @ 2014-2022.  All rights reserved.