If the injected fluid is much hotter or colder than the host matrix of the porous media and the specific heat capacities of the solid and fluid constituents are sufficiently different, then the assumption that the two constituents will have the same temperature at the continuum scale may not be correct. In this work, we formulate a dual-heat-transfer theory (in analog to the dual-permeability poromehanics theory) to examine how these local temperature difference affect the fracture patterns and the path-dependent responses at the small time scale and under what condition the one temperature theory is sufficient. To address the issue of the time scale difference of the coupled heat transfer problem, we introduce an asynchronous time integrator for the operator-split algorithm to improve the efficiency of the solver. Preprint available here [URL].
0 Comments
Leave a Reply. |
Group NewsNews about Computational Poromechanics lab at Columbia University. Categories
All
Archives
May 2023
|