Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Our work on modeling fracture and fragmentation of granular materials with evolving thermo-mechanical contacts via domain partitioning MPM has been accepted by CMAME

7/17/2021

1 Comment

 
In this work, we simulate the fragmentation process of particles by extending the domain partition MPM first introduced by Homel and Herbold 2017 to analyze how the thermal-coupling and surface-conductance affect the contact/fracture mechanics of granular materials. This framework enables us to circumvent the unrealistic crack patterns caused by using the homogenized stress of each particle as a criterion for fragmentation or straight split while capturing the strain-rate sensitivity of the fragmentation process simply through simulating crack branching. 
Abstract: 
We propose a material point method (MPM) to model the evolving multi-body contacts due to crack growth and fragmentation of thermo-elastic bodies.  By representing particle interface with an implicit function, we adopt the gradient partition techniques introduced by Homel and Herbold 2017 to identify the separation between a pair of distinct material surfaces. This treatment allows us to replicate the frictional heating of the evolving interfaces and predict the energy dissipation more precisely in the fragmentation process. By storing the temperature at material points, the resultant MPM model captures the thermal advection-diffusion in a Lagrangian frame during the fragmentation, which in return affects the structural heating and dissipation across the frictional interfaces. The resultant model is capable of replicating the crack growth and fragmentation without requiring dynamic adaptation of data structures or insertion of interface elements. A staggered algorithm is adopted to integrate the displacement and temperature sequentially. Numerical experiments are employed to validate the diffusion between the thermal contact, the multi-body contact interactions and demonstrate how these thermo-mechanical processes affect the path-dependent behaviors of the multi-body systems.

Preprint:
Available via ResearchGate: [URL]

Video Summary:
https://youtu.be/pg535F6bqtQ

1 Comment
Umesh Prasad Verma
1/8/2022 11:35:40 pm

Does the model hold good for Megascopic condition of Crust Mantle interface? Multiferous parametres context to convective cycles and thermocoupling effect govern over geo environments .

Reply



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.