Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Presentation at Coupled Geomechanics Symposium at SES Meeting at Purdue University

10/9/2014

0 Comments

 
Predicting possible leakage due to dynamics strain localization in granular materials with a coupled continuum-discrete coupling model

Yang Liu, WaiChing Sun*, Zifeng Yuan, Jacob Fish

Department of Civil Engineering and Engineering Mechanics

Columbia University

* Email: [email protected]

Abstract

A three-dimensional multiscale model has been developed and used to analyze the evolutions of microstructural attributes and hydraulic properties inside dilatant shear bands. In the proposed multiscale coupled scheme, we establish links between the discrete element method, which explicitly replicates granular motion of individual particles, and a finite element continuum model, which captures the homogenized responses of the granular assemblies. A spatial homogenization is performed to obtain the stress measure from representative elementary volume of discrete element simulations for macroscopic explicit dynamics finite element simulations. We demonstrate that the multiscale coupling scheme is able to capture the plastic dilatancy and pressure-sensitive frictional responses commonly observed inside dilatant shear bands, and replicate the induced anisotropy of the elasto-plastic responses, without employing any phenomenological plasticity model at macroscopic level. To improve cost-efficiency and prevent shear locking, a one-point quadrature rule is used along with an hour-glass control algorithm. Since discrete element simulations in each representatively elementary volume (Gauss point) requires no direct communication with its neighbors, the multiscale code can be programmed as a perfectly parallel problem, which is well suited to large scale distributed platforms and does not suffer parallel slowdown.

The resultant multiscale continuum-discrete coupling method retains the simplicity and efficiency of a continuum-based finite element model while naturally introducing length-scale to cure mesh pathology. In addition, internal variables, such as plastic dilatancy and plastic flow direction, are now obtained directly from granular physics, without introducing unnecessary empirical relations and phenomenology. Microstructural information, such as force chain length, coordination numbers and pore size distribution are compared with permeability inferred from lattice Boltzmann flow simulations to explain the mechanism that leads to the formation of flow conduit during strain localization. 

Keywords: multiscale; FEM-DEM model; granular materials; dynamics shear band; anisotropy

0 Comments



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.