Sun Research Group at Columbia University
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

Presentations at California 3/11 (Livermore) & 3/12 (Stanford)

3/7/2019

0 Comments

 
1. 2019 workshop to celebrate Prof. J.S. Chen's 60th birthday

11:00am – 11:15am March 11th  Alameda Room, ​The Pleasanton Marriot Hotel, Pleasanton, CA

An Adaptive Meta-Modeling Game for Automated Generations of Elasto-Plasticity Models with Self-Guided Discovery

Abstract:  We introduce a meta-modeling game based on concepts from multi-graph theory to find the optimal way to generate data and write models for blind predictions of a physical process We consider an idealized situation in which the modeling process of history-dependent process can be represented by a sequence of decision making where modelers make choices to formulate a sequence of actions to generate models.  While previous work on data-driven modeling often focus on completely replacing hand-crafted theory with a data-driven paradigm, our goal is to seek the best option that represents the hierarchy of material responses, i.e. the knowledge represented by a directed graph. As such, we introduce a new concept where all the modeling options can be recast as a directed multi-graph and each instant/configuration of the model can be understood as a path that links the source of the directed graph (e.g. strain history) to the sink (e.g. stress). This treatment enables us to further conceptualize the hybrid modeling process as a selection of the optimal choices in a decision tree search via deep reinforcement learning.  In the case where availability of data is limited, the meta-modeling algorithm also explores the weakness links in the constitutive laws and explore the optimal set of experiments to yield the best forward predictions under a limited budget. ​
Picture
2. Stanford Department Seminar 

4:30pm to 5:30pm March 12th, Shriram 104, Stanford University

Phase field damage-plasticity framework for fluid-infiltrating materials with size-dependent anisotropy

Abstract: Rock salt and clay are the prime candidates considered for nuclear waste geological disposal. In both materials, the microstructural attributes, such as the crystalline slip system, micro-fabric and mineral contacts, may lead to distinctive anisotropic responses at different length scales. In this talk, we present a unified mathematical framework designed to capture the size-dependent anisotropy of these path-dependent hydro-mechanical responses of geological materials used for nuclear waste disposal. In the brittle regime, we introduce a phase field fracture model in which the difference in critical energy release rates for different kinematics modes is considered. A search algorithm is used to determine the kinematic mode and propagation direction of the crack. In the ductile regime, we introduce a non-coaxial anisotropic regularization of the anisotropic modified Cam-Clay (MCC) model proposed by Semnani et al. 2016 to generate size-dependent plastic flow that could be non-coaxial to the stress gradient of the yield function. The influence of the size-dependent anisotropy on the formation of the shear band and the macroscopic responses of the effective media are analyzed in 2D and 3D numerical examples. The coupling between the damage and plastic responses of anisotropic materials, the transition from the brittle to ductile regimes and corresponding the poromechanical configurational force mesh adaption strategy required to capture the sharp gradients of pore pressure and phase field are also highlighted.  
Picture
Figure generated by Dr.Chuanqi Liu.
0 Comments



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    July 2023
    June 2023
    May 2023
    March 2023
    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: [email protected]
Copyright @ 2014-2025.  All rights reserved.