Sun Research Group at Columbia University
  • Home
  • News
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics
  • Home
  • News
  • PI
  • Team Members
  • Publications
  • Research
  • Teaching
  • Software & Data
  • Presentations
  • Recruitment & Advice
  • ML for Mechanics

USNCCM Austin Presentations

7/24/2019

0 Comments

 
2019-07-29
#1971999 - A Cooperative Two-player Game for Data-driven Discovery of Elasto-plasticity Knowledge Represented in Directed Graph
02:00 - 02:20
Minisymposium#203 Data-driven Modeling Using Uncertainty Quantification, Machine Learning and Optimization
Authors Kun Wang ,WaiChing Sun * ,Qiang Du
LocationR oom # Lone Star Ballroom F - LVL 3
​
We introduce a multi-agent meta-modeling game to generate data, knowledge, and models that make predictions on constitutive responses of elasto-plastic materials. We introduce a new concept from graph theory where a modeler agent is tasked with evaluating all the modeling options recast as a directed multigraph and find the optimal path that links the source of the directed graph (e.g. strain history) to the target (e.g. stress) measured by an objective function. Meanwhile, the data agent, which is tasked with generating data from real or virtual experiments (e.g. molecular dynamics, discrete element simulations), interacts with the modeling agent sequentially and uses reinforcement learning to design new experiments to optimize the prediction capacity. Consequently, this treatment enables us to emulate an idealized scientific collaboration as selections of the optimal choices in a decision tree search done automatically via deep reinforcement learning.

2019-07-31
#1971644 - Data-driven Validation of Bishop’s Effective Stress Principle through Deep Reinforcement Learning
02:20 - 02:40
Minisymposium#105 Computational Geomechanics, in honor of Prof. Mary F. Wheeler
Authors Yousef Heider * ,Kun Wang ,Hyoung Suk Suh ,WaiChing Sun
Location Room # Lone Star Ballroom C - LVL 3


In analogy to Terzaghi’s effective stress principle in fully-saturated porous media, Bishop’s effective stress principle presents a partition of the total stress in unsaturated porous media between suction and effective stress contributions. Although widely applied in Geomechanics, the validity and generality of Bishop’s principle across saturation regimes still a matter of debate, especially for path-dependent materials that exhibit hysteresis retention behaviors. The proposed meta-modeling automated learning approach makes use of data-based constitutive modeling, generated via reinforcement learning, to evaluate the validity and generality of Bishop’s effective stress principle for various types of blind predictions involving material failures, such as strain localization and brittle fracture. Synthetic micro-structural-based data of unsaturated granular materials (such as coordination number, fabric tensor, porosity, saturation, suction, and intrinsic permeability) are generated using the discrete element method DEM together with the pore-network approach, applied to a representative volume element (RVE). Data set generated from sub-scale simulations are used to automatically create, train, calibrate and validate plausible alternative stress partition theories represented by directed graphs until an optimal knowledge graph is formed. The blind prediction performance of the data-driven discovery will then be compared with predictions based on different variations of the effective stress principle for unsaturated porous media.

2019-07-31
#1971799 - A Micromorphic-regularized Cam-clay-type Model for Capturing Size-dependent Anisotropy in Geological materials
05:30 - 05:50
Minisymposium#105 Computational Geomechanics, in honor of Prof. Mary F. Wheeler
Authors Eric Bryant* ,WaiChing Sun
LocationRoom # Lone Star Ballroom C - LVL 3

We introduce a micromorphic-regularized anisotropic modified Cam-clay model which captures the size-dependent anisotropic elastoplastic responses for clay, mudstone, shales and sedimentary rock. To capture the distinctive anisotropic effect induced by the micro-structures of clay particle aggregate, clusters, peds, micro-fabric and mineral contact, we use a mapping the links the anisotropic stress state to a fictitious stress space to introduce anisotropy to the modified Cam-clay model at the material point scale. Meanwhile, the meso-scale aniostropy is captured via an anisotropic micromorphic regularization model such that the gradient-enhanced plastic flow may exhibit anisotropic responses via a diffusivity tensor. This diffusivity tensor enables the micromorphic regularized model to exhibit plastic flow non-co-axial to the stress gradient of the yield function without introducing non-associate flow rules and hence provide additional degree of freedom for modelers to capture the size-dependent ansiotropy of geological materials that exhibit different anisotropic responses across different length scales. Numerical examples are used to examine the volumetric locking and numerical stability issues that may occur at critical state where isochoric plastic flow dominates the deformation mode. In particular, we present evidence that the micromorphic regularization could also be a potential remedy to overcome the volumetric locking and the spurious checkerboard modes. The influence of the size-dependent anisotropy on the formation and propagation of shear band in the anisotropic material is demonstrated. In the future, we will explore coupling to a phase field fracture model, in order to predict the wide spectrum of brittle and ductile anisotropic responses.
0 Comments



Leave a Reply.

    Group News

    News about Computational Poromechanics lab at Columbia University.

    Categories

    All
    Invited Talk
    Job Placements
    Journal Article
    Presentation
    Special Events

    Archives

    December 2022
    November 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    February 2020
    January 2020
    December 2019
    September 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    November 2013
    September 2013

    RSS Feed

Contact Information
Prof. Steve Sun
Phone: 212-851-4371 
Fax: +1 212-854-6267
Email: wsun@columbia.edu
Copyright @ 2014-2022.  All rights reserved.